Download Free A Basis Theory Primer Expanded Edition Applied And Numerical Harmonic Analysis Book in PDF and EPUB Free Download. You can read online A Basis Theory Primer Expanded Edition Applied And Numerical Harmonic Analysis and write the review.

The classical subject of bases in Banach spaces has taken on a new life in the modern development of applied harmonic analysis. This textbook is a self-contained introduction to the abstract theory of bases and redundant frame expansions and its use in both applied and classical harmonic analysis. The four parts of the text take the reader from classical functional analysis and basis theory to modern time-frequency and wavelet theory. * Part I develops the functional analysis that underlies most of the concepts presented in the later parts of the text. * Part II presents the abstract theory of bases and frames in Banach and Hilbert spaces, including the classical topics of convergence, Schauder bases, biorthogonal systems, and unconditional bases, followed by the more recent topics of Riesz bases and frames in Hilbert spaces. * Part III relates bases and frames to applied harmonic analysis, including sampling theory, Gabor analysis, and wavelet theory. * Part IV deals with classical harmonic analysis and Fourier series, emphasizing the role played by bases, which is a different viewpoint from that taken in most discussions of Fourier series. Key features: * Self-contained presentation with clear proofs is accessible to graduate students, pure and applied mathematicians, and engineers interested in the mathematical underpinnings of applications. * Extensive exercises complement the text and provide opportunities for learning-by-doing, making the text suitable for graduate-level courses; hints for selected exercises are included at the end of the book. * A separate solutions manual is available for instructors upon request at: www.birkhauser-science.com/978-0-8176-4686-8/. * No other text develops the ties between classical basis theory and its modern uses in applied harmonic analysis. A Basis Theory Primer is suitable for independent study or as the basis for a graduate-level course. Instructors have several options for building a course around the text depending on the level and background of their students.
This volume is dedicated to the memory of Björn Jawerth. It contains original research contributions and surveys in several of the areas of mathematics to which Björn made important contributions. Those areas include harmonic analysis, image processing, and functional analysis, which are of course interrelated in many significant and productive ways. Among the contributors are some of the world's leading experts in these areas. With its combination of research papers and surveys, this book may become an important reference and research tool. This book should be of interest to advanced graduate students and professional researchers in the areas of functional analysis, harmonic analysis, image processing, and approximation theory. It combines articles presenting new research with insightful surveys written by foremost experts.
The Norbert Wiener Center for Harmonic Analysis and Applications provides a state-of-the-art research venue for the broad emerging area of mathematical engineering in the context of harmonic analysis. This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These volumes span a large spectrum of harmonic analysis and its applications. They are divided into the following parts: Volume I · Sampling Theory · Remote Sensing · Mathematics of Data Processing · Applications of Data Processing Volume II · Measure Theory · Filtering · Operator Theory · Biomathematics Each part provides state-of-the-art results, with contributions from an impressive array of mathematicians, engineers, and scientists in academia, industry, and government. Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center is an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 3 returns to the themes of Part 1 by discussing pointwise limits (going beyond the usual focus on the Hardy-Littlewood maximal function by including ergodic theorems and martingale convergence), harmonic functions and potential theory, frames and wavelets, spaces (including bounded mean oscillation (BMO)) and, in the final chapter, lots of inequalities, including Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen’s An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." — Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005
Inverse Problems in Scattering and Imaging is a collection of lectures from a NATO Advanced Research Workshop that integrates the expertise of physicists and mathematicians in different areas with a common interest in inverse problems. Covering a range of subjects from new developments on the applied mathematics/mathematical physics side to many areas of application, the book achieves a blend of research, review, and tutorial contributions. It is of interest to researchers in the areas of applied mathematics and mathematical physics as well as those working in areas where inverse problems can be applied.
Advanced undergraduate and beginning graduate students, faculty, researchers and practitioners in signal processing, telecommunications, and computer science, and applied mathematics. It assumes a background of Fourier series and transforms and of linear algebra and matrix methods. This primer presents a well balanced blend of the mathematical theory underlying wavelet techniques and a discussion that gives insight into why wavelets are successful in signal analysis, compression, dection, numerical analysis, and a wide variety of other theoretical and practical applications. It fills a gap in the existing wavelet literature with its unified view of expansions of signals into bases and frames, as well as the use of filter banks as descriptions and algorithms.

Best Books

DMCA - Contact