Download Free Algebra A Very Short Introduction Very Short Introductions Book in PDF and EPUB Free Download. You can read online Algebra A Very Short Introduction Very Short Introductions and write the review.

This introduction invites readers to revisit algebra and appreciate the elegance and power of equations and inequalities. Offering a clear explanation of algebra through theory and example, Higgins shows how equations lead to complex numbers, matrices, groups, rings, and fields.--
In this Very Short Introduction Peter M. Higgins presents an overview of the number types featured in modern science and mathematics. Providing a non-technical account, he explores the evolution of the modern number system, examines the fascinating role of primes, and explains their role in contemporary cryptography.
This book aims to explain, in clear non-technical language,what it is that mathematicians do, and how that differs from and builds on the mathematics that most people are familiar with from school. It is the ideal introduction for anyone who wishes to deepen their understanding of mathematics.
Symmetry is an immensely important concept in mathematics and throughout the sciences. In this Very Short Introduction, Ian Stewart highlights the deep implications of symmetry and its important scientific applications across the entire subject.
Mathematics is a fundamental human activity that can be practised and understood in a multitude of ways; indeed, mathematical ideas themselves are far from being fixed, but are adapted and changed by their passage across periods and cultures. In this Very Short Introduction, Jacqueline Stedall explores the rich historical and cultural diversity of mathematical endeavour from the distant past to the present day. Arranged thematically, to exemplify the varied contexts in which people have learned, used, and handed on mathematics, she also includes illustrative case studies drawn from a range of times and places, including early imperial China, the medieval Islamic world, and nineteenth-century Britain. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Mathematics is playing an increasingly important role in society and the sciences, enhancing our ability to use models and handle data. While pure mathematics is mostly interested in abstract structures, applied mathematics sits at the interface between this abstract world and the world in which we live. This area of mathematics takes its nourishment from society and science and, in turn, provides a unified way to understand problems arising in diverse fields. This Very Short Introduction presents a compact yet comprehensive view of the field of applied mathematics, and explores its relationships with (pure) mathematics, science, and engineering. Explaining the nature of applied mathematics, Alain Goriely discusses its early achievements in physics and engineering, and its development as a separate field after World War II. Using historical examples, current applications, and challenges, Goriely illustrates the particular role that mathematics plays in the modern sciences today and its far-reaching potential. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Infinity is an intriguing topic, with connections to religion, philosophy, metaphysics, logic, and physics as well as mathematics. Its history goes back to ancient times, with especially important contributions from Euclid, Aristotle, Eudoxus, and Archimedes. The infinitely large (infinite) isintimately related to the infinitely small (infinitesimal). Cosmologists consider sweeping questions about whether space and time are infinite. Philosophers and mathematicians ranging from Zeno to Russell have posed numerous paradoxes about infinity and infinitesimals. Many vital areas ofmathematics rest upon some version of infinity. The most obvious, and the first context in which major new techniques depended on formulating infinite processes, is calculus. But there are many others, for example Fourier analysis and fractals.In this Very Short Introduction, Ian Stewart discusses infinity in mathematics while also drawing in the various other aspects of infinity and explaining some of the major problems and insights arising from this concept. He argues that working with infinity is not just an abstract, intellectualexercise but that it is instead a concept with important practical everyday applications, and considers how mathematicians use infinity and infinitesimals to answer questions or supply techniques that do not appear to involve the infinite.ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, andenthusiasm to make interesting and challenging topics highly readable.

Best Books