Download Free An Introduction To Difference Equations Undergraduate Texts In Mathematics Book in PDF and EPUB Free Download. You can read online An Introduction To Difference Equations Undergraduate Texts In Mathematics and write the review.

A must-read for mathematicians, scientists and engineers who want to understand difference equations and discrete dynamics Contains the most complete and comprehenive analysis of the stability of one-dimensional maps or first order difference equations. Has an extensive number of applications in a variety of fields from neural network to host-parasitoid systems. Includes chapters on continued fractions, orthogonal polynomials and asymptotics. Lucid and transparent writing style
Integrating both classical and modern treatments of difference equations, this book contains the most updated and comprehensive material on stability, Z-transform, discrete control theory, asymptotic theory, continued fractions and orthogonal polynomials. While the presentation is simple enough for use by advanced undergraduates and beginning graduates in mathematics, engineering science, and economics, it will also be a useful reference for scientists and engineers interested in discrete mathematical models. The text covers a large set of applications in a variety of disciplines, including neural networks, feedback control, Markov chains, trade models, heat transfer, propagation of plants, epidemic models and host-parasitoid systems, with each section rounded off by an extensive and highly selected set of exercises.
This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.
This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.
The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.
Differential Equations for Scientists and Engineers is a book designed with students in mind. It attempts to take a concise, simple, and no-frills approach to differential equations. The approach used in this text is to give students extensive experience in main solution techniques with a lighter emphasis on the physical interpretation of the results. With a more manageable page count than comparable titles, and over 400 exercises that can be solved without a calculating device, this book emphasizes the understanding and practice of essential topics in a succinct fashion. At the end of each worked example, the author provides the Mathematica commands that can be used to check the results and where applicable, to generate graphical representations. It can be used independently by the average student, while those continuing with the subject will develop a fundamental framework with which to pursue more advanced material. This book is designed for undergraduate students with some basic knowledge of precalculus algebra and a first course in calculus.
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

Best Books