Download Free An Introduction To Invariants And Moduli Cambridge Studies In Advanced Mathematics Book in PDF and EPUB Free Download. You can read online An Introduction To Invariants And Moduli Cambridge Studies In Advanced Mathematics and write the review.

Incorporated in this volume are the first two books in Mukai's series on Moduli Theory. The notion of a moduli space is central to geometry. However, it's influence is not confined there; for example the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. An accurate account of Mukai's influential Japanese texts, this tranlation will be a valuable resource for researchers and graduate students working in a range of areas.
Coverage includes foundational material as well as current research, authored by top specialists within their fields.
This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatories, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development.
This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.
The area of Algebraic Groups and Homogeneous Spaces is one area in which major advances have been made in recent decades. This volume contains articles by several leading experts in central topics in the area, including representation theory in characteristic p, combinatorial representation theory, flag varieties, Schubert varieties, vector bundles, loop groups and Kac-Moody Lie algebras, Galois cohomology of algebraic groups, and Tannakian categories. In addition to original papers in these areas, the volume includes a survey on representation theory in characteristic p by H. Andersen and an article by T.A. Springer on Armand Borel's work in algebraic groups and Lie groups.
The collection of articles in this volume are based on l ectures presented during the Winter School on Mirror Symmetry held at Harvard University. There are many new directions suggested by mirror symmetry which could potentially have very rich connections in physics and mathematics. This book brings together the latest research in a major area of mathematical physics, including the recent progress in mirror manifolds and Lagrangian submanifolds. In particular, several articles describing homological approach and related topics are included. Other AMS titles edited by S.-T Yau published in the AMS/IP Studies in Advanced Mathematics series include, Mirror Symmetry III, Volume 10, Mirror symmetry II, Volume 1, and Mirror Symmetry I, Volume 9.

Best Books