Download Free An Introduction To Statistical Modeling Of Extreme Values Springer Series In Statistics Book in PDF and EPUB Free Download. You can read online An Introduction To Statistical Modeling Of Extreme Values Springer Series In Statistics and write the review.

Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.
Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.
Focuses on theoretical results along with applications All the main topics covering the heart of the subject are introduced to the reader in a systematic fashion Concentration is on the probabilistic and statistical aspects of extreme values Excellent introduction to extreme value theory at the graduate level, requiring only some mathematical maturity
Statistical analysis of extreme data is vital to many disciplines including hydrology, insurance, finance, engineering and environmental sciences. This book provides a self-contained introduction to parametric modeling, exploratory analysis and statistical interference for extreme values. For this Third Edition, the entire text has been thoroughly updated and rearranged to meet contemporary requirements, with new sections and chapters address such topics as dependencies, the conditional analysis and the multivariate modeling of extreme data. New chapters include An Overview of Reduced-Bias Estimation; The Spectral Decomposition Methodology; About Tail Independence; and Extreme Value Statistics of Dependent Random Variables.
This book is a comprehensive guide to extreme value theory in engineering. Written for the end user with intermediate and advanced statistical knowledge, it covers classical methods as well as recent advances. A collection of 150 examples illustrates the theoretical results and takes the reader from simple applications through complex cases of dependence.
This comprehensive text gives an interesting and useful blend of the mathematical, probabilistic and statistical tools used in heavy-tail analysis. Heavy tails are characteristic of many phenomena where the probability of a single huge value impacts heavily. Record-breaking insurance losses, financial-log returns, files sizes stored on a server, transmission rates of files are all examples of heavy-tailed phenomena. Key features: * Unique text devoted to heavy-tails * Emphasizes both probability modeling and statistical methods for fitting models. Most treatments focus on one or the other but not both * Presents broad applicability of heavy-tails to the fields of data networks, finance (e.g., value-at- risk), insurance, and hydrology * Clear, efficient and coherent exposition, balancing theory and actual data to show the applicability and limitations of certain methods * Examines in detail the mathematical properties of the methodologies as well as their implementation in Splus or R statistical languages * Exposition driven by numerous examples and exercises Prerequisites for the reader include a prior course in stochastic processes and probability, some statistical background, some familiarity with time series analysis, and ability to use (or at least to learn) a statistics package such as R or Splus. This work will serve second-year graduate students and researchers in the areas of applied mathematics, statistics, operations research, electrical engineering, and economics.

Best Books

DMCA - Contact