Download Free Big Data A Business And Legal Guide Book in PDF and EPUB Free Download. You can read online Big Data A Business And Legal Guide and write the review.

Big Data: A Business and Legal Guide supplies a clear understanding of the interrelationships between Big Data, the new business insights it reveals, and the laws, regulations, and contracting practices that impact the use of the insights and the data. Providing business executives and lawyers (in-house and in private practice) with an accessible primer on Big Data and its business implications, this book will enable readers to quickly grasp the key issues and effectively implement the right solutions to collecting, licensing, handling, and using Big Data. The book brings together subject matter experts who examine a different area of law in each chapter and explain how these laws can affect the way your business or organization can use Big Data. These experts also supply recommendations as to the steps your organization can take to maximize Big Data opportunities without increasing risk and liability to your organization. Provides a new way of thinking about Big Data that will help readers address emerging issues Supplies real-world advice and practical ways to handle the issues Uses examples pulled from the news and cases to illustrate points Includes a non-technical Big Data primer that discusses the characteristics of Big Data and distinguishes it from traditional database models Taking a cross-disciplinary approach, the book will help executives, managers, and counsel better understand the interrelationships between Big Data, decisions based on Big Data, and the laws, regulations, and contracting practices that impact its use. After reading this book, you will be able to think more broadly about the best way to harness Big Data in your business and establish procedures to ensure that legal considerations are part of the decision.
Application of Big Data for National Security provides users with state-of-the-art concepts, methods, and technologies for Big Data analytics in the fight against terrorism and crime, including a wide range of case studies and application scenarios. This book combines expertise from an international team of experts in law enforcement, national security, and law, as well as computer sciences, criminology, linguistics, and psychology, creating a unique cross-disciplinary collection of knowledge and insights into this increasingly global issue. The strategic frameworks and critical factors presented in Application of Big Data for National Security consider technical, legal, ethical, and societal impacts, but also practical considerations of Big Data system design and deployment, illustrating how data and security concerns intersect. In identifying current and future technical and operational challenges it supports law enforcement and government agencies in their operational, tactical and strategic decisions when employing Big Data for national security Contextualizes the Big Data concept and how it relates to national security and crime detection and prevention Presents strategic approaches for the design, adoption, and deployment of Big Data technologies in preventing terrorism and reducing crime Includes a series of case studies and scenarios to demonstrate the application of Big Data in a national security context Indicates future directions for Big Data as an enabler of advanced crime prevention and detection
This handbook brings together a variety of approaches to the uses of big data in multiple fields, primarily science, medicine, and business. This single resource features contributions from researchers around the world from a variety of fields, where they share their findings and experience. This book is intended to help spur further innovation in big data. The research is presented in a way that allows readers, regardless of their field of study, to learn from how applications have proven successful and how similar applications could be used in their own field. Contributions stem from researchers in fields such as physics, biology, energy, healthcare, and business. The contributors also discuss important topics such as fraud detection, privacy implications, legal perspectives, and ethical handling of big data.
Companies, lawyers, privacy officers and marketing and IT professionals are increasingly facing privacy issues. While information is freely available, it can be difficult to grasp a problem quickly, without getting lost in details and advocacy. This is where Determann’s Field Guide to Data Privacy Law comes into its own – identifying key issues and providing concise practical guidance for an increasingly complex field shaped by rapid change in international laws, technology and society.
This edited collection brings together a series of interdisciplinary contributions in the field of Information Technology Law. The topics addressed in this book cover a wide range of theoretical and practical legal issues that have been created by cutting-edge Internet technologies, primarily Big Data, the Internet of Things, and Cloud computing. Consideration is also given to more recent technological breakthroughs that are now used to assist, and — at times — substitute for, human work, such as automation, robots, sensors, and algorithms. The chapters presented in this edition address these issues from the perspective of different legal backgrounds. The first part of the book discusses some of the shortcomings that have prompted legislators to carry out reforms with regard to privacy, data protection, and data security. Notably, some of the complexities and salient points with regard to the new European General Data Protection Regulation (EU GDPR) and the new amendments to the Japan’s Personal Information Protection Act (PIPA) have been scrutinized. The second part looks at the vital role of Internet intermediaries (or brokers) for the proper functioning of the globalized electronic market and innovation technologies in general. The third part examines an electronic approach to evidence with an evaluation of how these technologies affect civil and criminal investigations. The authors also explore issues that have emerged in e-commerce, such as Bitcoin and its blockchain network effects. The book aims to explain, systemize and solve some of the lingering legal questions created by the disruptive technological change that characterizes the early twenty-first century.
Advises would-be musicians on getting started, obtaining copyrights, selecting managers, and related matters.
Big Data of Complex Networks presents and explains the methods from the study of big data that can be used in analysing massive structural data sets, including both very large networks and sets of graphs. As well as applying statistical analysis techniques like sampling and bootstrapping in an interdisciplinary manner to produce novel techniques for analyzing massive amounts of data, this book also explores the possibilities offered by the special aspects such as computer memory in investigating large sets of complex networks. Intended for computer scientists, statisticians and mathematicians interested in the big data and networks, Big Data of Complex Networks is also a valuable tool for researchers in the fields of visualization, data analysis, computer vision and bioinformatics. Key features: Provides a complete discussion of both the hardware and software used to organize big data Describes a wide range of useful applications for managing big data and resultant data sets Maintains a firm focus on massive data and large networks Unveils innovative techniques to help readers handle big data Matthias Dehmer received his PhD in computer science from the Darmstadt University of Technology, Germany. Currently, he is Professor at UMIT – The Health and Life Sciences University, Austria, and the Universität der Bundeswehr München. His research interests are in graph theory, data science, complex networks, complexity, statistics and information theory. Frank Emmert-Streib received his PhD in theoretical physics from the University of Bremen, and is currently Associate professor at Tampere University of Technology, Finland. His research interests are in the field of computational biology, machine learning and network medicine. Stefan Pickl holds a PhD in mathematics from the Darmstadt University of Technology, and is currently a Professor at Bundeswehr Universität München. His research interests are in operations research, systems biology, graph theory and discrete optimization. Andreas Holzinger received his PhD in cognitive science from Graz University and his habilitation (second PhD) in computer science from Graz University of Technology. He is head of the Holzinger Group HCI-KDD at the Medical University Graz and Visiting Professor for Machine Learning in Health Informatics Vienna University of Technology.

Best Books

DMCA - Contact