Download Free Complex Networks Principles Methods And Applications Book in PDF and EPUB Free Download. You can read online Complex Networks Principles Methods And Applications and write the review.

Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems and metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, mathematics, engineering, biology, neuroscience and the social sciences.
Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.
Eigentlich sollte man längst bei einem Termin sein, doch dann klingelt das Handy und das E-Mail-Postfach quillt auch schon wieder über. Für Sport und Erholung bleibt immer weniger Zeit und am Ende resigniert man ausgebrannt, unproduktiv und völlig gestresst. Doch das muss nicht sein. Denn je entspannter wir sind, desto kreativer und produktiver werden wir. Mit David Allens einfacher und anwendungsorientierter Methode wird beides wieder möglich: effizient zu arbeiten und die Freude am Leben zurückzugewinnen.
This book addresses synchronization in networks of coupled systems. It illustrates the main aspects of the phenomenon through concise theoretical results and code, allowing readers to reproduce them and encouraging readers to pursue their own experimentation. The book begins by introducing the mathematical representation of nonlinear circuits and the code for their simulation. This is followed by a brief account of the concept of the complex network, which describes the main aspects of complex networks and the main model types, with a particular focus on the code used to study and reproduce the models. The focus then shifts to the process through which independent nonlinear circuits that follow different trajectories without coupling share some properties of their motion: synchronization. The authors present the main techniques for studying synchronization in complex networks, including the major measures, the stability properties and control techniques. The book then moves on to advanced topics in synchronization of complex networks by examining forms of synchronization in which not all the units share the same trajectory, namely chimera states, clustering synchronization, and relay and remote synchronization. Simple codes for experimentation with these topics and control methods are also provided. In closing, the book addresses the problem of synchronization in time-varying networks.
Multilayer networks' has become a central topic in Network Science. The book presents a comprehensive account of this emerging field. Multilayer networks are formed by several networks and include social networks, financial markets, multi-modal transportation systems, infrastructures, molecular networks and the brain.

Best Books

DMCA - Contact