Download Free Complex Numbers And Geometry Mathematical Association Of America Textbooks Book in PDF and EPUB Free Download. You can read online Complex Numbers And Geometry Mathematical Association Of America Textbooks and write the review.

The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained - no background in complex numbers is assumed - and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.
Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.
Geared toward readers unfamiliar with complex numbers, this text explains how to solve problems that frequently arise in the applied sciences and emphasizes constructions related to algebraic operations. 1956 edition.
This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.
* Learn how complex numbers may be used to solve algebraic equations, as well as their geometric interpretation * Theoretical aspects are augmented with rich exercises and problems at various levels of difficulty * A special feature is a selection of outstanding Olympiad problems solved by employing the methods presented * May serve as an engaging supplemental text for an introductory undergrad course on complex numbers or number theory
An Episodic History of Mathematics will acquaint students and readers with mathematical language, thought, and mathematical life by means of historically important mathematical vignettes. It will also serve to help prospective teachers become more familiar with important ideas of in the history of mathematicsboth classical and modern.Contained within are wonderful and engaging stories and anecdotes about Pythagoras and Galois and Cantor and Poincar, which let readers indulge themselves in whimsy, gossip, and learning. The mathematicians treated here were complex individuals who led colorful and fascinating lives, and did fascinating mathematics. They remain interesting to us as people and as scientists.This history of mathematics is also an opportunity to have some fun because the focus in this text is also on the practicalgetting involved with the mathematics and solving problems. This book is unabashedly mathematical. In the course of reading this book, the neophyte will become involved with mathematics by working on the same problems that, for instance, Zeno and Pythagoras and Descartes and Fermat and Riemann worked on.This is a book to be read, therefore, with pencil and paper in hand, and a calculator or computer close by. All will want to experiment; to try things; and become a part of the mathematical process.
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains as selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads, or for teachers looking for a text for an honor class.

Best Books

DMCA - Contact