Download Free Computability An Introduction To Recursive Function Theory Book in PDF and EPUB Free Download. You can read online Computability An Introduction To Recursive Function Theory and write the review.

This introduction to recursive theory computability begins with a mathematical characterization of computable functions, develops the mathematical theory and includes a full discussion of noncomputability and undecidability. Later chapters move on to more advanced topics such as degrees of unsolvability and Gödel's Incompleteness Theorem.
Computability Theory: An Introduction to Recursion Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The text includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable way. Frequent historical information presented throughout More extensive motivation for each of the topics than other texts currently available Connects with topics not included in other textbooks, such as complexity theory
The aim of this textbook is to present an account of the theory of computation. After introducing the concept of a model of computation and presenting various examples, the author explores the limitations of effective computation via basic recursion theory. Self-reference and other methods are introduced as fundamental and basic tools for constructing and manipulating algorithms. From there the book considers the complexity of computations and the notion of a complexity measure is introduced. Finally, the book culminates in considering time and space measures and in classifying computable functions as being either feasible or not. The author assumes only a basic familiarity with discrete mathematics and computing, making this textbook ideal for a graduate-level introductory course. It is based on many such courses presented by the author and so numerous exercises are included. In addition, the solutions to most of these exercises are provided.
Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
Reflexive Structures: An Introduction to Computability Theory is concerned with the foundations of the theory of recursive functions. The approach taken presents the fundamental structures in a fairly general setting, but avoiding the introduction of abstract axiomatic domains. Natural numbers and numerical functions are considered exclusively, which results in a concrete theory conceptually organized around Church's thesis. The book develops the important structures in recursive function theory: closure properties, reflexivity, enumeration, and hyperenumeration. Of particular interest is the treatment of recursion, which is considered from two different points of view: via the minimal fixed point theory of continuous transformations, and via the well known stack algorithm. Reflexive Structures is intended as an introduction to the general theory of computability. It can be used as a text or reference in senior undergraduate and first year graduate level classes in computer science or mathematics.
A mathematically sophisticated introduction to Turing's theory, Boolean functions, automata, and formal languages.
Computability Theory: An Introduction provides information pertinent to the major concepts, constructions, and theorems of the elementary theory of computability of recursive functions. This book provides mathematical evidence for the validity of the Church–Turing thesis. Organized into six chapters, this book begins with an overview of the concept of effective process so that a clear understanding of the effective computability of partial and total functions is obtained. This text then introduces a formal development of the equivalence of Turing machine computability, enumerability, and decidability with other formulations. Other chapters consider the formulas of the predicate calculus, systems of recursion equations, and Post's production systems. This book discusses as well the fundamental properties of the partial recursive functions and the recursively enumerable sets. The final chapter deals with different formulations of the basic ideas of computability that are equivalent to Turing-computability. This book is a valuable resource for undergraduate or graduate students.

Best Books