Download Free Computer Age Statistical Inference Algorithms Evidence And Data Science Institute Of Mathematical Statistics Monographs Book in PDF and EPUB Free Download. You can read online Computer Age Statistical Inference Algorithms Evidence And Data Science Institute Of Mathematical Statistics Monographs and write the review.

Take an exhilarating journey through the modern revolution in statistics with two of the ringleaders.
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.
Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.
Simultaneous confidence bands enable more intuitive and detailed inference of regression analysis than the standard inferential methods of parameter estimation and hypothesis testing. Simultaneous Inference in Regression provides a thorough overview of the construction methods and applications of simultaneous confidence bands for various inferential purposes. It supplies examples and MATLABĀ® programs that make it easy to apply the methods to your own data analysis. The MATLAB programs, along with color figures, are available for download on www.personal.soton.ac.uk/wl/mybook.html Most of the book focuses on normal-error linear regression models. The author presents simultaneous confidence bands for a simple regression line, a multiple linear regression model, and polynomial regression models. He also uses simultaneous confidence bands to assess part of a multiple linear regression model with the zero function, to compare two regression models, and to evaluate more than two regression models. The final chapter demonstrates the use of simultaneous confidence bands in generalized linear regression models, such as logistic regression models. This book shows how to employ simultaneous confidence bands to make useful inferences in regression analysis. The topics discussed can be extended to functions other than parametric regression functions, offering novel opportunities for research beyond linear regression models.
Statistics is a subject with a vast field of application, involving problems which vary widely in their character and complexity.However, in tackling these, we use a relatively small core of central ideas and methods. This book attempts to concentrateattention on these ideas: they are placed in a general settingand illustrated by relatively simple examples, avoidingwherever possible the extraneous difficulties of complicatedmathematical manipulation.In order to compress the central body of ideas into a smallvolume, it is necessary to assume a fair degree of mathematicalsophistication on the part of the reader, and the book is intendedfor students of mathematics who are already accustomed tothinking in rather general terms about spaces and functions

Best Books

DMCA - Contact