Download Free Computer Simulation Of Dynamic Phenomena Scientific Computation Book in PDF and EPUB Free Download. You can read online Computer Simulation Of Dynamic Phenomena Scientific Computation and write the review.

A description of computer programs for simulating phenomena in hydrodynamics, gas dynamics, and elastic plastic flow in one, two, and three dimensions. The text covers Maxwell's equations, and thermal and radiation diffusion, while the numerical procedures described permit the exact conservation of physical properties in the solutions of the fundamental laws of mechanics. The author also treats materials, including the use of simulation programs to predict material behavior.
The book gives the reader the basis for understanding the way numerical schemes achieve accurate and stable simulations of physical phenomena. It is based on the finite-difference method and simple problems that allow also the analytic solutions to be worked out. ODEs as well as hyperbolic, parabolic and elliptic types are treated. The book builds on simple model equations and, pedagogically, on a host of problems given together with their solutions.
This volume focuses on the mathematical foundations of LES and its models and provides a connection between the tools of applied mathematics, partial differential equations and LES. A useful entry point into the field for PhD students in applied mathematics, computational mathematics and partial differential equations is offered.
Computer simulation was first pioneered as a scientific tool in meteorology and nuclear physics in the period following World War II, but it has grown rapidly to become indispensible in a wide variety of scientific disciplines, including astrophysics, high-energy physics, climate science, engineering, ecology, and economics. Digital computer simulation helps study phenomena of great complexity, but how much do we know about the limits and possibilities of this new scientific practice? How do simulations compare to traditional experiments? And are they reliable? Eric Winsberg seeks to answer these questions in Science in the Age of Computer Simulation. Scrutinizing these issue with a philosophical lens, Winsberg explores the impact of simulation on such issues as the nature of scientific evidence; the role of values in science; the nature and role of fictions in science; and the relationship between simulation and experiment, theories and data, and theories at different levels of description. Science in the Age of Computer Simulation will transform many of the core issues in philosophy of science, as well as our basic understanding of the role of the digital computer in the sciences.
This book constitutes the refereed proceedings of the 8th International Conference on High-Performance Computing and Networking, HPCN Europe 2000, held in Amsterdam, The Netherlands, in May 2000. The 52 revised full papers presented together with 34 revised posters were carefully reviewed for inclusion in the book. The papers are organized in sections on problem solving environments, metacomputing, load balancing, numerical parallel algorithms, virtual enterprises and virtual laboratories, cooperation coordination, Web-based tools for tele-working, monitoring and performance, low-level algorithms, Java in HPCN, cluster computing, data analysis, and applications in a variety of fields.
Since the second half of the 20th century machine computations have played a critical role in science and engineering. Computer-based techniques have become especially important in molecular biology, since they often represent the only viable way to gain insights into the behavior of a biological system as a whole. The complexity of biological systems, which usually needs to be analyzed on different time- and size-scales and with different levels of accuracy, requires the application of different approaches, ranging from comparative analysis of sequences and structural databases, to the analysis of networks of interdependence between cell components and processes, through coarse-grained modeling to atomically detailed simulations, and finally to molecular quantum mechanics. This book provides a comprehensive overview of modern computer-based techniques for computing the structure, properties and dynamics of biomolecules and biomolecular processes. The twenty-two chapters, written by scientists from all over the world, address the theory and practice of computer simulation techniques in the study of biological phenomena. The chapters are grouped into four thematic sections dealing with the following topics: the methodology of molecular simulations; applications of molecular simulations; bioinformatics methods and use of experimental information in molecular simulations; and selected applications of molecular quantum mechanics. The book includes an introductory chapter written by Harold A. Scheraga, one of the true pioneers in simulation studies of biomacromolecules.

Best Books

DMCA - Contact