Download Free Data Analysis Using Regression And Multilevel Hierarchical Models Book in PDF and EPUB Free Download. You can read online Data Analysis Using Regression And Multilevel Hierarchical Models and write the review.

This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Popular in its first edition for its rich, illustrative examples and lucid explanations of the theory and use of hierarchical linear models (HLM), the book has been updated to include: an intuitive introductory summary of the basic procedures for estimation and inference used with HLM models that only requires a minimal level of mathematical sophistication; a new section on multivariate growth models; a discussion of research synthesis or meta-analysis applications; aata analytic advice on centering of level-1 predictors, and new material on plausible value intervals and robust standard estimators.
This book provides a uniquely accessible introduction to multilevel modeling, a powerful tool for analyzing relationships between an individual-level dependent variable, such as student reading achievement, and individual-level and contextual explanatory factors, such as gender and neighborhood quality. Helping readers build on the statistical techniques they already know, Robert Bickel emphasizes the parallels with more familiar regression models, shows how to do multilevel modeling using SPSS, and demonstrates how to interpret the results. He discusses the strengths and limitations of multilevel analysis and explains specific circumstances in which it offers (or does not offer) methodological advantages over more traditional techniques. Over 300 dataset examples from research on educational achievement, income attainment, voting behavior, and other timely issues are presented in numbered procedural steps.
This book covers a broad range of topics about multilevel modeling. The goal is to help readers to understand the basic concepts, theoretical frameworks, and application methods of multilevel modeling. It is at a level also accessible to non-mathematicians, focusing on the methods and applications of various multilevel models and using the widely used statistical software SAS®. Examples are drawn from analysis of real-world research data.
The Second Edition of this classic text introduces the main methods, techniques and issues involved in carrying out multilevel modeling and analysis. Snijders and Bosker's book is an applied, authoritative and accessible introduction to the topic, providing readers with a clear conceptual and practical understanding of all the main issues involved in designing multilevel studies and conducting multilevel analysis. This book provides step-by-step coverage of: • multilevel theories • ecological fallacies • the hierarchical linear model • testing and model specification • heteroscedasticity • study designs • longitudinal data • multivariate multilevel models • discrete dependent variables There are also new chapters on: • missing data • multilevel modeling and survey weights • Bayesian and MCMC estimation and latent-class models. This book has been comprehensively revised and updated since the last edition, and now discusses modeling using HLM, MLwiN, SAS, Stata including GLLAMM, R, SPSS, Mplus, WinBugs, Latent Gold, and SuperMix. This is a must-have text for any student, teacher or researcher with an interest in conducting or understanding multilevel analysis. Tom A.B. Snijders is Professor of Statistics in the Social Sciences at the University of Oxford and Professor of Statistics and Methodology at the University of Groningen. Roel J. Bosker is Professor of Education and Director of GION, Groningen Institute for Educational Research, at the University of Groningen.
The use of Markov chain Monte Carlo (MCMC) methods for estimating hierarchical models involves complex data structures and is often described as a revolutionary development. An intermediate-level treatment of Bayesian hierarchical models and their applications, Applied Bayesian Hierarchical Methods demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables and in methods where parameters can be treated as random collections. Emphasizing computational issues, the book provides examples of the following application settings: meta-analysis, data structured in space or time, multilevel and longitudinal data, multivariate data, nonlinear regression, and survival time data. For the worked examples, the text mainly employs the WinBUGS package, allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. It also incorporates BayesX code, which is particularly useful in nonlinear regression. To demonstrate MCMC sampling from first principles, the author includes worked examples using the R package. Through illustrative data analysis and attention to statistical computing, this book focuses on the practical implementation of Bayesian hierarchical methods. It also discusses several issues that arise when applying Bayesian techniques in hierarchical and random effects models.
Students in the sciences, economics, social sciences, and medicine take an introductory statistics course. And yet statistics can be notoriously difficult for instructors to teach and for students to learn. To help overcome these challenges, Gelman and Nolan have put together this fascinating and thought-provoking book. Based on years of teaching experience the book provides a wealth of demonstrations, activities, examples, and projects that involve active student participation. Part I of the book presents a large selection of activities for introductory statistics courses and has chapters such as 'First week of class'— with exercises to break the ice and get students talking; then descriptive statistics, graphics, linear regression, data collection (sampling and experimentation), probability, inference, and statistical communication. Part II gives tips on what works and what doesn't, how to set up effective demonstrations, how to encourage students to participate in class and to work effectively in group projects. Course plans for introductory statistics, statistics for social scientists, and communication and graphics are provided. Part III presents material for more advanced courses on topics such as decision theory, Bayesian statistics, sampling, and data science.

Best Books

DMCA - Contact