Download Free Data Science In R A Case Studies Approach To Computational Reasoning And Problem Solving Chapman Hall Crc The R Series Book in PDF and EPUB Free Download. You can read online Data Science In R A Case Studies Approach To Computational Reasoning And Problem Solving Chapman Hall Crc The R Series and write the review.

Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and Computation Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts approach a problem and reason about different ways of implementing solutions. The book’s collection of projects, comprehensive sample solutions, and follow-up exercises encompass practical topics pertaining to data processing, including: Non-standard, complex data formats, such as robot logs and email messages Text processing and regular expressions Newer technologies, such as Web scraping, Web services, Keyhole Markup Language (KML), and Google Earth Statistical methods, such as classification trees, k-nearest neighbors, and naïve Bayes Visualization and exploratory data analysis Relational databases and Structured Query Language (SQL) Simulation Algorithm implementation Large data and efficiency Suitable for self-study or as supplementary reading in a statistical computing course, the book enables instructors to incorporate interesting problems into their courses so that students gain valuable experience and data science skills. Students learn how to acquire and work with unstructured or semistructured data as well as how to narrow down and carefully frame the questions of interest about the data. Blending computational details with statistical and data analysis concepts, this book provides readers with an understanding of how professional data scientists think about daily computational tasks. It will improve readers’ computational reasoning of real-world data analyses.
Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.
Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.
Von A wie Ausreißer bis Z wie Z-Verteilung Entdecken Sie mit Statistik für Dummies Ihren Spaß an der Statistik und werfen Sie einen Blick hinter die Kulissen dieser komplizierten, aber hilfreichen Wissenschaft! Deborah Rumsey zeigt Ihnen das nötige statistische Handwerkszeug wie Stichprobe, Wahrscheinlichkeit, Bias, Median, Durchschnitt und Korrelation. Sie lernen die verschiedenen grafischen Darstellungsmöglichkeiten von statistischem Material kennen und werden über die unterschiedlichen Methoden der Auswertung erstaunt sein. Schärfen Sie mit diesem Buch Ihr Bewusstsein für Zahlen und deren Interpretation, sodass Ihnen keiner mehr etwas vormachen kann!
Das Buch Semantic Web – Grundlagen vermittelt als erstes deutschsprachiges Lehrbuch die Grundlagen des Semantic Web in verständlicher Weise. Es ermöglicht einen einfachen und zügigen Einstieg in Methoden und Technologien des Semantic Web und kann z.B. als solide Grundlage für die Vorbereitung und Durchführung von Vorlesungen genutzt werden. Die Autoren trennen dabei sauber zwischen einer intuitiven Hinführung zur Verwendung semantischer Technologien in der Praxis einerseits, und der Erklärung formaler und theoretischer Hintergründe andererseits. Nur für letzteres werden Grundkenntnisse in Logik vorausgesetzt, die sich bei Bedarf jedoch durch zusätzliche Lektüre und mit Hilfe eines entsprechenden Kapitels im Anhang aneignen lassen. Das Lehrbuch richtet sich primär an Studenten mit Grundkenntnissen in Informatik sowie an interessierte Praktiker welche sich im Bereich Semantic Web fortbilden möchten. Aus den Rezensionen: "... RDF, RDF-S und OWL. Diese Sprachen ... werden von den Autoren dargestellt. Bei der Darstellung ... fallen sie selten zu schwierigen Fachslang, sondern liefern eine gut nachvollziehbare Schilderung mit einfachen Beispielen, auch Übungsaufgaben runden die Kapitel ab. ... Semantic Web ist ein einfach geschriebenes und anschauliches Buch, das In die Grundkonzepte der Semantic-Web-Techniken einführt. Wer sich schnell in RDF, RDF-S und Co. einarbeiten muss und etwas Vorbildung in Logik und Algebra mitbringt, der trifft mit diesem Lehrbuch sicherlich eine gute Wahl ..." (http://www.literaturnetz.com/content/view/8742/44/)

Best Books

DMCA - Contact