Download Free Elements Of Algebraic Topology Book in PDF and EPUB Free Download. You can read online Elements Of Algebraic Topology and write the review.

Elements of Algebraic Topology provides the most concrete approach to the subject. With coverage of homology and cohomology theory, universal coefficient theorems, Kunneth theorem, duality in manifolds, and applications to classical theorems of point-set topology, this book is perfect for comunicating complex topics and the fun nature of algebraic topology for beginners.
Elements of Algebraic Topology provides the most concrete approach to the subject. With coverage of homology and cohomology theory, universal coefficient theorems, Kunneth theorem, duality in manifolds, and applications to classical theorems of point-set topology, this book is perfect for comunicating complex topics and the fun nature of algebraic topology for beginners.
Algebraic topology is the study of the global properties of spaces by means of algebra. It is an important branch of modern mathematics with a wide degree of applicability to other fields, including geometric topology, differential geometry, functional analysis, differential equations, algebraic geometry, number theory, and theoretical physics. This book provides an introduction to the basic concepts and methods of algebraic topology for the beginner. It presents elements of both homology theory and homotopy theory, and includes various applications. The author's intention is to rely on the geometric approach by appealing to the reader's own intuition to help understanding. The numerous illustrations in the text also serve this purpose. Two features make the text different from the standard literature: first, special attention is given to providing explicit algorithms for calculating the homology groups and for manipulating the fundamental groups. Second, the book contains many exercises, all of which are supplied with hints or solutions. This makes the book suitable for both classroom use and for independent study.
This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.
This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.
Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.

Best Books

DMCA - Contact