Download Free Flexibility In Engineering Design Engineering Systems Book in PDF and EPUB Free Download. You can read online Flexibility In Engineering Design Engineering Systems and write the review.

A guide to using the power of design flexibility to improve the performance of complex technological projects, for designers, managers, users, and analysts. Project teams can improve results by recognizing that the future is inevitably uncertain and that by creating flexible designs they can adapt to eventualities. This approach enables them to take advantage of new opportunities and avoid harmful losses. Designers of complex, long-lasting projects--such as communication networks, power plants, or hospitals--must learn to abandon fixed specifications and narrow forecasts. They need to avoid the "flaw of averages," the conceptual pitfall that traps so many designs in underperformance. Failure to allow for changing circumstances risks leaving significant value untapped. This book is a guide for creating and implementing value-enhancing flexibility in design. It will be an essential resource for all participants in the development and operation of technological systems: designers, managers, financial analysts, investors, regulators, and academics. The book provides a high-level overview of why flexibility in design is needed to deliver significantly increased value. It describes in detail methods to identify, select, and implement useful flexibility. The book is unique in that it explicitly recognizes that future outcomes are uncertain. It thus presents forecasting, analysis, and evaluation tools especially suited to this reality. Appendixes provide expanded explanations of concepts and analytic tools.
Given that engineering flexibility can potentially provide a competitive advantage, the question then becomes: Precisely how valuable is this flexibility? However, traditional methods often fail to accurately capture the economic value of investments in an environment of widespread uncertainty and rapid change. The real options method represents the new state-of-the-art technique for valuation and management of strategic investments, enabling corporate decision-makers to leverage uncertainty and limit downside risk. Real Options in Engineering Design, Operations, and Management presents and synthesizes the body of knowledge in the area of real options for engineering systems. Providing case studies and step-by-step computations of real options valuation, it covers engineering applications across different disciplines such as industrial and civil engineering, and computer science. The authors review financial-option research results, consider how to quantify engineering activities, and analyze optimal business strategies based on a variety of real option models. They integrate academic work on real options in engineering, current practice, and discussion of future needs and opportunities. Flexibility in decision making allows firms to compete more effectively in a world of substantial price and demand uncertainty, product variety, short product life cycles, and rapid product development. And with more frequent demands being placed on engineering systems to change, managers and manufacturing systems must react to events as they unfold. This book explores a real options modeling framework for engineering transitions that allows decision makers to capture and investigate several alternatives for improving an engineering system.
Control and Dynamic Systems: Advances in Theory and Applications, Volume 57: Multidisciplinary Engineering Systems: Design and Optimization Techniques and their Application deals with techniques used in the design and optimization of future engineering systems. Comprised of 11 chapters, this book covers techniques for improving product design quality in multidisciplinary systems. These techniques include decomposition techniques for synthesis process; optimization for aircraft systems; actuator and sensor placement; and robust techniques in system design and control process. Students, research workers, and practising engineers will find this book invaluable.
An overview of engineering systems that describes the new challenges posed for twenty-first-century engineers by today's highly complex sociotechnical systems. Engineering, for much of the twentieth century, was mainly about artifacts and inventions. Now, it's increasingly about complex systems. As the airplane taxis to the gate, you access the Internet and check email with your PDA, linking the communication and transportation systems. At home, you recharge your plug-in hybrid vehicle, linking transportation to the electricity grid. Today's large-scale, highly complex sociotechnical systems converge, interact, and depend on each other in ways engineers of old could barely have imagined. As scale, scope, and complexity increase, engineers consider technical and social issues together in a highly integrated way as they design flexible, adaptable, robust systems that can be easily modified and reconfigured to satisfy changing requirements and new technological opportunities. Engineering Systems offers a comprehensive examination of such systems and the associated emerging field of study. Through scholarly discussion, concrete examples, and history, the authors consider the engineer's changing role, new ways to model and analyze these systems, the impacts on engineering education, and the future challenges of meeting human needs through the technologically enabled systems of today and tomorrow.
In the competitive business arena companies must continually strive to create new and better products faster, more efficiently, and more cost effectively than their competitors to gain and keep the competitive advantage. Computer-aided design (CAD), computer-aided engineering (CAE), and computer-aided manufacturing (CAM) are now the industry standard. These seven volumes give the reader a comprehensive treatment of the techniques and applications of CAD, CAE, and CAM.
In the last decade, the production of mechanical components to be assembled in final products produced in high volumes (e.g. cars, mopeds, industrial vehicles, etc.) has undergone deep changes due to the overall modifications in the way companies compete. Companies must consider competitive factors such as short lead times, tight product tolerances, frequent market changes and cost reduction. Anyway, companies often have to define production objectives as trade-offs among these critical factors since it can be difficult to improve all of them. Even if system flexibility is often considered a fundamental requirement for firms, it is not always a desirable characteristic of a system because it requires relevant investment cost which can jeopardize the profitability of the firm. Dedicated systems are not able to adapt to changes of the product characteristics while flexible systems offer more flexibility than what is needed, thus increasing investment and operative costs. Production contexts characterized by mid to high demand volume of well identified families of products in continuous evolution do not require the highest level of flexibility; therefore, manufacturing system flexibility must be rationalized and it is necessary to find out the best trade-off between productivity and flexibility by designing manufacturing systems endowed with the right level of flexibility required by the production problem. This new class of production systems can be named Focused Flexibility Manufacturing Systems-FFMSs. The flexibility degree in FFMSs is related to their ability to cope with volume, mix and technological changes, and it must take into account both present and future changes. The required level of system flexibility impacts on the architecture of the system and the explicit design of flexibility often leads to hybrid systems, i.e. automated integrated systems in which parts can be processed by both general purpose and dedicated machines. This is a key issue of FFMSs and results from the matching of flexibility and productivity that respectively characterize FMSs and Dedicated Manufacturing Systems (DMSs). The market share of the EU in the machine tool sector is 44%; the introduction of focused flexibility would be particularly important for machine tool builders whose competitive advantage is based on the ability of customizing their systems on the basis of needs of their customers. In fact, even if current production contexts frequently present situations which would fit well with the FFMS approach, tradition and know-how of machine tool builders play a crucial role. Firms often agree with the focused flexibility vision, nevertheless they decide not to pay the risk and efforts related to the design of this new system architecture. This is due also to the lack of well-structured design approaches which can help machine tool builders to configure innovative systems. Therefore, the FFMS topic is studied through the book chapters following a shared mission: "To define methodologies and tools to design production systems with a minimum level of flexibility needed to face, during their lifecycle, the product and process evolution both in the technological and demand aspects. The goal is to find out the optimal trade-off between flexibility and productivity". The book framework follows the architecture which has been developed to address the FFMS Design problem. This architecture is both broad and detailed, since it pays attention to all the relevant levels in a firm hierarchy which are involved in the system design. Moreover, the architecture is innovative because it models both the point of view of the machine tool builder and the point of view of the system user. The architecture starts analyzing Manufacturing Strategy issues and generating the possible demand scenario to be faced. Technological aspects play a key role while solving process plan problems for the products in the part family. Strategic and technological data becomes input when a machine tool builder performs system configuration. The resulting system configurations are possible solutions that a system user considers when planning its system capacity. All the steps of the architecture are deeply studied, developing methods and tools to address each subproblem. Particular attention is paid to the methodologies adopted to face the different subproblems: mathematical programming, stochastic programming, simulation techniques and inverse kinematics have been used. The whole architecture provides a general approach to implement the right degree of flexibility and it allows to study how different aspects and decisions taken in a firm impact on each other. The work presented in the book is innovative because it gives links among different research fields, such as Manufacturing Strategy, Process Plan, System Design, Capacity Planning and Performance Evaluation; moreover, it helps to formalize and rationalize a critical area such as manufacturing system flexibility. The addressed problem is relevant at an academic level but, also, at an industrial level. A great deal of industrial sectors need to address the problem of designing systems with the right degree of flexibility; for instance, automotive, white goods, electrical and electronic goods industries, etc. Attention to industrial issues is confirmed by empirical studies and real case analyses which are presented within the book chapters.
strategy, but we also focus on execution. We talk about organizational design, and also refect on leadership practices. Our assumption is that in a dynamic world, leaders at all levels, have to constantly switch gears, wear different hats, and na- gate at different altitudes. They have to think about the “total” enterprise, not in terms of compartmentalized silos or felds of functional expertise. Much like a g- eral contractor, they have to draw on specialized expertise, as and when needed, yet keep the big picture in mind. Our hope is that our diagnostic tools can help teams develop a shared frame of reference and generate cross-functional dialogue. The third driving force behind this second edition is the gradual convergence between the worlds of entrepreneurial start-ups and challenges facing established corporations. Innovation, agility, and initiative are no longer the exclusive preserve of start-ups. Established companies are looking for ways to re-invent themselves, to innovate, to think creatively, and to make their enterprises more fexible, agile and entrepreneurial. We have had the good fortune to sit at the intersection of these two worlds. We hope our ideas can beneft both groups. We set out to provide a “buffet table”, a menu of options that can be helpful for the two ends of the spectrum.

Best Books

DMCA - Contact