Download Free Fundamentals Of Modern Bioprocessing Book in PDF and EPUB Free Download. You can read online Fundamentals Of Modern Bioprocessing and write the review.

Biological drug and vaccine manufacturing has quickly become one of the highest-value fields of bioprocess engineering, and many bioprocess engineers are now finding job opportunities that have traditionally gone to chemical engineers. Fundamentals of Modern Bioprocessing addresses this growing demand. Written by experts well-established in the field, this book connects the principles and applications of bioprocessing engineering to healthcare product manufacturing and expands on areas of opportunity for qualified bioprocess engineers and students. The book is divided into two sections: the first half centers on the engineering fundamentals of bioprocessing; while the second half serves as a handbook offering advice and practical applications. Focused on the fundamental principles at the core of this discipline, this work outlines every facet of design, component selection, and regulatory concerns. It discusses the purpose of bioprocessing (to produce products suitable for human use), describes the manufacturing technologies related to bioprocessing, and explores the rapid expansion of bioprocess engineering applications relevant to health care product manufacturing. It also considers the future of bioprocessing—the use of disposable components (which is the fastest growing area in the field of bioprocessing) to replace traditional stainless steel. In addition, this text: Discusses the many types of genetically modified organisms Outlines laboratory techniques Includes the most recent developments Serves as a reference and contains an extensive bibliography Emphasizes biological manufacturing using recombinant processing, which begins with creating a genetically modified organism using recombinant techniques Fundamentals of Modern Bioprocessing outlines both the principles and applications of bioprocessing engineering related to healthcare product manufacturing. It lays out the basic concepts, definitions, methods and applications of bioprocessing. A single volume comprehensive reference developed to meet the needs of students with a bioprocessing background; it can also be used as a source for professionals in the field.
Bioprocessing for Value-Added Products from Renewable Resources provides a timely review of new and unconventional techniques for manufacturing high-value products based on simple biological material. The book discusses the principles underpinning modern industrial biotechnology and describes a unique collection of novel bioprocesses for a sustainable future. This book begins in a very structured way. It first looks at the modern technologies that form the basis for creating a bio-based industry before describing the various organisms that are suitable for bioprocessing - from bacteria to algae - as well as their unique characteristics. This is followed by a discussion of novel, experimental bioprocesses, such as the production of medicinal chemicals, the production of chiral compounds and the design of biofuel cells. The book concludes with examples where biological, renewable resources become an important feedstock for large-scale industrial production. This book is suitable for researchers, practitioners, students, and consultants in the bioprocess and biotechnology fields, and for others who are interested in biotechnology, engineering, industrial microbiology and chemical engineering. ·Reviews the principles underpinning modern industrial biotechnology ·Provides a unique collection of novel bioprocesses for a sustainable future ·Gives examples of economical use of renewable resources as feedstocks ·Suitable for both non-experts and experts in the bioproduct industry
What’s the Deal with Biosimilars? Biosimilars are gaining momentum as new protein therapeutic candidates that can help fill a vital need in the healthcare industry. The biological drugs are produced by recombinant DNA technology that allows for large-scale production and an overall reduction time in costs and development. Part of a two-volume set that covers varying aspects of biosimilars, Biosimilars and Interchangeable Biologics: Tactical Elements explores the development and manufacturing of biosimilars and targets challenges surrounding the creation of these products. This includes manufacturing, production costs, and intellectual property barriers, particularly in regulated markets (regulatory agencies are still in the process of developing guidelines). It addresses the complexity of biological drugs, and it discusses specific structural elements vital to the functionality, immunogenicity, and safety of biosimilar products. Of specific interest to practitioners, researchers, and scientists in the biopharmaceutical industry, this volume provides an overall understanding of the hurdles, difficulties, and practicalities of developing a strong plan. It introduces a step-by-step approach for creating a strategy that helps develop and manufacture a biosimilar product while reducing overall production costs and meeting the requirements of biosimilarity based on analytical and functional, pharmacokinetic, pharmacodynamic (where applicable), and nonclinical toxicology or toxicokinetic similarity (where appropriate) while remaining competitive in the market.
Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design, Second Edition, provides a comprehensive resource on bioprocess kinetics, bioprocess systems, sustainability, and reaction engineering. Author Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics, batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering, also introducing key principles that enable bioprocess engineers to engage in analysis, optimization, and design with consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme in this book, with more advanced techniques and applications being covered in depth. This updated edition reflects advances that are transforming the field, ranging from genetic sequencing, to new techniques for producing proteins from recombinant DNA, and from green chemistry, to process stability and sustainability. The book introduces techniques with broad applications, including the conversion of renewable biomass, the production of chemicals, materials, pharmaceuticals, biologics, and commodities, medical applications, such as tissue engineering and gene therapy, and solving critical environmental problems. Includes the mechanistic description of biotransformations and chemical transformations Provides quantitative descriptions of bioprocesses Contains extensive illustrative drawings, which make the understanding of the subject easy Includes bioprocess kinetics and reactor analysis Contains examples of the various process parameters, their significance, and their specific practical use Incorporates sustainability concepts into the various bioprocesses
ICH Quality Guidelines: * Overview and Orientation * Introduction * Part I: Stability [Q1A(R2), Q1B, Q1C, Q1D, Q1E] * Part II: Analytical Validation [Q2(R1)] * Part III: Impurities [Q3A(R2), Q3B(R2), Q3C(R4)] * Part IV: Pharmacopoeias (List Overview) * Part V: Quality of Biotechnological Products [Q5A(R1), Q5B, Q5C, Q5D, Q5E] * Part VI: Specifications [Q6A, Q6B] * Part VII: Good Manufacturing Practice [Q7] * Part VIII: Pharmaceutical Development [Q8(R2)] * Part IX: Quality Risk Management [Q9] * Part X: Pharmaceutical Quality System [Q10] Reference Tools * Part XI: Questions and Answers for Q8/9/10 Quality Guidance Documents * Part XII: Combined Glossary and Index for all Quality Guidance Documents
Biotechnology introduces students in science, engineering, or technology to the basics of genetic engineering, recombinant organisms, wild-type fermentations, metabolic engineering and microorganisms for the production of small molecule bioproducts. The text includes a brief historical perspective and economic rationale on the impact of regulation on biotechnology production, as well as chapters on biotechnology in relation to metabolic pathways and microbial fermentations, enzymes and enzyme kinetics, metabolism, biological energetics, metabolic pathways, nucleic acids, genetic engineering, recombinant organisms and the production of monoclonal antibodies.

Best Books

DMCA - Contact