Download Free Getting Started With Julia Programming Language Book in PDF and EPUB Free Download. You can read online Getting Started With Julia Programming Language and write the review.

This book is for you if you are a data scientist or working on any technical or scientific computation projects. The book assumes you have a basic working knowledge of high-level dynamic languages such as MATLAB, R, Python, or Ruby.
Leverage the power of Julia to design and develop high performing programs About This Book Get to know the best techniques to create blazingly fast programs with Julia Stand out from the crowd by developing code that runs faster than your peers' code Complete an extensive data science project through the entire cycle from ETL to analytics and data visualization Who This Book Is For This learning path is for data scientists and for all those who work in technical and scientific computation projects. It will be great for Julia developers who are interested in high-performance technical computing. This learning path assumes that you already have some basic working knowledge of Julia's syntax and high-level dynamic languages such as MATLAB, R, Python, or Ruby. What You Will Learn Set up your Julia environment to achieve the highest productivity Solve your tasks in a high-level dynamic language and use types for your data only when needed Apply Julia to tackle problems concurrently and in a distributed environment Get a sense of the possibilities and limitations of Julia's performance Use Julia arrays to write high performance code Build a data science project through the entire cycle of ETL, analytics, and data visualization Display graphics and visualizations to carry out modeling and simulation in Julia Develop your own packages and contribute to the Julia Community In Detail In this learning path, you will learn to use an interesting and dynamic programming language—Julia! You will get a chance to tackle your numerical and data problems with Julia. You'll begin the journey by setting up a running Julia platform before exploring its various built-in types. We'll then move on to the various functions and constructs in Julia. We'll walk through the two important collection types—arrays and matrices in Julia. You will dive into how Julia uses type information to achieve its performance goals, and how to use multiple dispatch to help the compiler emit high performance machine code. You will see how Julia's design makes code fast, and you'll see its distributed computing capabilities. By the end of this learning path, you will see how data works using simple statistics and analytics, and you'll discover its high and dynamic performance—its real strength, which makes it particularly useful in highly intensive computing tasks. This learning path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Getting Started with Julia by Ivo Balvaert Julia High Performance by Avik Sengupta Mastering Julia by Malcolm Sherrington Style and approach This hands-on manual will give you great explanations of the important concepts related to Julia programming.
A step-by-step guide that demonstrates how to build simple-to-advanced applications through examples in Julia Lang 1.x using modern tools Key Features Work with powerful open-source libraries for data wrangling, analysis, and visualization Develop full-featured, full-stack web applications Learn to perform supervised and unsupervised machine learning and time series analysis with Julia Book Description Julia is a new programming language that offers a unique combination of performance and productivity. Its powerful features, friendly syntax, and speed are attracting a growing number of adopters from Python, R, and Matlab, effectively raising the bar for modern general and scientific computing. After six years in the making, Julia has reached version 1.0. Now is the perfect time to learn it, due to its large-scale adoption across a wide range of domains, including fintech, biotech, education, and AI. Beginning with an introduction to the language, Julia Programming Projects goes on to illustrate how to analyze the Iris dataset using DataFrames. You will explore functions and the type system, methods, and multiple dispatch while building a web scraper and a web app. Next, you'll delve into machine learning, where you'll build a books recommender system. You will also see how to apply unsupervised machine learning to perform clustering on the San Francisco business database. After metaprogramming, the final chapters will discuss dates and time, time series analysis, visualization, and forecasting. We'll close with package development, documenting, testing and benchmarking. By the end of the book, you will have gained the practical knowledge to build real-world applications in Julia. What you will learn Leverage Julia's strengths, its top packages, and main IDE options Analyze and manipulate datasets using Julia and DataFrames Write complex code while building real-life Julia applications Develop and run a web app using Julia and the HTTP package Build a recommender system using supervised machine learning Perform exploratory data analysis Apply unsupervised machine learning algorithms Perform time series data analysis, visualization, and forecasting Who this book is for Data scientists, statisticians, business analysts, and developers who are interested in learning how to use Julia to crunch numbers, analyze data and build apps will find this book useful. A basic knowledge of programming is assumed.
Learn Julia language for data science and data analytics About This Book Set up Julia's environment and start building simple programs Explore the technical aspects of Julia and its potential when it comes to speed and data processing Write efficient and high-quality code in Julia Who This Book Is For This book allows existing programmers, statisticians and data scientists to learn the Julia and take its advantage while building applications with complex numerical and scientific computations. Basic knowledge of mathematics is needed to understand the various methods that will be used or created in the book to exploit the capabilities for which Julia is made. What You Will Learn Understand Julia's ecosystem and create simple programs Master the type system and create your own types in Julia Understand Julia's type system, annotations, and conversions Define functions and understand meta-programming and multiple dispatch Create graphics and data visualizations using Julia Build programs capable of networking and parallel computation Develop real-world applications and use connections for RDBMS and NoSQL Learn to interact with other programming languages–C and Python—using Julia In Detail Julia is a highly appropriate language for scientific computing, but it comes with all the required capabilities of a general-purpose language. It allows us to achieve C/Fortran-like performance while maintaining the concise syntax of a scripting language such as Python. It is perfect for building high-performance and concurrent applications. From the basics of its syntax to learning built-in object types, this book covers it all. This book shows you how to write effective functions, reduce code redundancies, and improve code reuse. It will be helpful for new programmers who are starting out with Julia to explore its wide and ever-growing package ecosystem and also for experienced developers/statisticians/data scientists who want to add Julia to their skill-set. The book presents the fundamentals of programming in Julia and in-depth informative examples, using a step-by-step approach. You will be taken through concepts and examples such as doing simple mathematical operations, creating loops, metaprogramming, functions, collections, multiple dispatch, and so on. By the end of the book, you will be able to apply your skills in Julia to create and explore applications of any domain. Style and approach This book demonstrates the basics of Julia along with some data structures and testing tools that will give you enough material to get started with the language from an application standpoint.
Mit diesen sieben Sprachen erkunden Sie die wichtigsten Programmiermodelle unserer Zeit. Lernen Sie die dynamische Typisierung kennen, die Ruby, Python und Perl so flexibel und verlockend macht. Lernen Sie das Prototyp-System verstehen, das das Herzstück von JavaScript bildet. Erfahren Sie, wie das Pattern Matching in Prolog die Entwicklung von Scala und Erlang beeinflusst hat. Entdecken Sie, wie sich die rein funktionale Programmierung in Haskell von der Lisp-Sprachfamilie, inklusive Clojure, unterscheidet. Erkunden Sie die parallelen Techniken, die das Rückgrat der nächsten Generation von Internet-Anwendungen bilden werden. Finden Sie heraus, wie man Erlangs "Lass es abstürzen"-Philosophie zum Aufbau fehlertoleranter Systeme nutzt. Lernen Sie das Aktor-Modell kennen, das das parallele Design bei Io und Scala bestimmt. Entdecken Sie, wie Clojure die Versionierung nutzt, um einige der schwierigsten Probleme der Nebenläufigkeit zu lösen. Hier finden Sie alles in einem Buch. Nutzen Sie die Konzepte einer Sprache, um kreative Lösungen in einer anderen Programmiersprache zu finden – oder entdecken Sie einfach eine Sprache, die Sie bisher nicht kannten. Man kann nie wissen – vielleicht wird sie sogar eines ihrer neuen Lieblingswerkzeuge.
Get started with Julia for engineering and numerical computing, especially data science, machine learning, and scientific computing applications. This book explains how Julia provides the functionality, ease-of-use and intuitive syntax of R, Python, MATLAB, SAS, or Stata combined with the speed, capacity, and performance of C, C++, or Java. You’ll learn the OOP principles required to get you started, then how to do basic mathematics with Julia. Other core functionality of Julia that you’ll cover, includes working with complex numbers, rational and irrational numbers, rings, and fields. Beginning Julia Programming takes you beyond these basics to harness Julia’s powerful features for mathematical functions in Julia, arrays for matrix operations, plotting, and more. Along the way, you also learn how to manage strings, write functions, work with control flows, and carry out I/O to implement and leverage the mathematics needed for your data science and analysis projects. "Julia walks like Python and runs like C". This phrase explains why Julia is quickly growing as the most favored option for data analytics and numerical computation. After reading and using this book, you'll have the essential knowledge and skills to build your first Julia-based application. What You'll Learn Obtain core skills in Julia Apply Julia in engineering and science applications Work with mathematical functions in Julia Use arrays, strings, functions, control flow, and I/O in Julia Carry out plotting and display basic graphics Who This Book Is For Those who are new to Julia; experienced users may also find this helpful as a reference.

Best Books

DMCA - Contact