Download Free Graph Analysis And Visualization Discovering Business Opportunity In Linked Data Book in PDF and EPUB Free Download. You can read online Graph Analysis And Visualization Discovering Business Opportunity In Linked Data and write the review.

Wring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. Study graphical examples of networks using clear and insightful visualizations Analyze specifically-curated, easy-to-use data sets from various industries Learn the software tools and programming languages that extract insights from data Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences – until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative resource.
Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.
Summary Visualizing Graph Data teaches you not only how to build graph data structures, but also how to create your own dynamic and interactive visualizations using a variety of tools. This book is loaded with fascinating examples and case studies to show you the real-world value of graph visualizations. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Assume you are doing a great job collecting data about your customers and products. Are you able to turn your rich data into important insight? Complex relationships in large data sets can be difficult to recognize. Visualizing these connections as graphs makes it possible to see the patterns, so you can find meaning in an otherwise over-whelming sea of facts. About the Book Visualizing Graph Data teaches you how to understand graph data, build graph data structures, and create meaningful visualizations. This engaging book gently introduces graph data visualization through fascinating examples and compelling case studies. You'll discover simple, but effective, techniques to model your data, handle big data, and depict temporal and spatial data. By the end, you'll have a conceptual foundation as well as the practical skills to explore your own data with confidence. What's Inside Techniques for creating effective visualizations Examples using the Gephi and KeyLines visualization packages Real-world case studies About the Reader No prior experience with graph data is required. About the Author Corey Lanum has decades of experience building visualization and analysis applications for companies and government agencies around the globe. Table of Contents PART 1 - GRAPH VISUALIZATION BASICS Getting to know graph visualization Case studies An introduction to Gephi and KeyLines PART 2 VISUALIZE YOUR OWN DATA Data modeling How to build graph visualizations Creating interactive visualizations How to organize a chart Big data: using graphs when there's too much data Dynamic graphs: how to show data over time Graphs on maps: the where of graph visualization
You've got data to communicate. But what kind of visualization do you choose, how do you build it, and how do you ensure that it's up to the demands of the Web? In Data Visualization with JavaScript, you'll learn how to use JavaScript, HTML, and CSS to build the most practical visualizations for your data. Step-by-step examples walk you through creating, integrating, and debugging different types of visualizations and will have you building basic visualizations, like bar, line, and scatter graphs, in no time. Then you'll move on to more advanced topics, including how to: Create tree maps, heat maps, network graphs, word clouds, and timelines Map geographic data, and build sparklines and composite charts Add interactivity and retrieve data with AJAX Manage data in the browser and build data-driven web applications Harness the power of the Flotr2, Flot, Chronoline.js, D3.js, Underscore.js, and Backbone.js libraries If you already know your way around building a web page but aren't quite sure how to build a good visualization, Data Visualization with JavaScript will help you get your feet wet without throwing you into the deep end. Before you know it, you'll be well on your way to creating simple, powerful data visualizations.
This book provides a de?nition and study of a knowledge representation and r- soning formalism stemming from conceptual graphs, while focusing on the com- tational properties of this formalism. Knowledge can be symbolically represented in many ways. The knowledge representation and reasoning formalism presented here is a graph formalism – knowledge is represented by labeled graphs, in the graph theory sense, and r- soning mechanisms are based on graph operations, with graph homomorphism at the core. This formalism can thus be considered as related to semantic networks. Since their conception, semantic networks have faded out several times, but have always returned to the limelight. They faded mainly due to a lack of formal semantics and the limited reasoning tools proposed. They have, however, always rebounded - cause labeled graphs, schemas and drawings provide an intuitive and easily und- standable support to represent knowledge. This formalism has the visual qualities of any graphic model, and it is logically founded. This is a key feature because logics has been the foundation for knowledge representation and reasoning for millennia. The authors also focus substantially on computational facets of the presented formalism as they are interested in knowledge representation and reasoning formalisms upon which knowledge-based systems can be built to solve real problems. Since object structures are graphs, naturally graph homomorphism is the key underlying notion and, from a computational viewpoint, this moors calculus to combinatorics and to computer science domains in which the algorithmicqualitiesofgraphshavelongbeenstudied,asindatabasesandconstraint networks.
This book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms. The authors discuss in the first part of this book, the semantic aspects of spatio-temporal graph data in two application domains, viz., urban transportation and social networks. Then the authors present representational models and data structures, which can effectively capture these semantics, while ensuring support for computationally scalable algorithms. In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area. This book will be useful as a secondary text for advanced-level students entering into relevant fields of computer science, such as transportation and urban planning. It may also be useful for researchers and practitioners in the field of navigational algorithms.
Technology and Applications of Polymers Derived from Biomass explores the range of different possible routes from biomass to polymeric materials, including the value and limitations of using biomass in material applications and a comparison of petrochemical-derived polymers and bio-based polymers. The book discusses biomass sources, types, chemistry and handling concerns. It covers the manufacture of industrial chemicals from biomass and the derivation of monomers and polymers from biomass. It also details the processing and applications of biomass-derived polymers to enable materials scientists and engineers realize the potential of biomass as a sustainable source of polymers, including plastics and elastomers. The book is a one-stop-shop reference—giving students a basic understanding of the technology and how the material can be applied to industrial processes they will face in the workforce, and giving materials engineers and product designers the information they need to make more informed material selection decisions. Provides fundamental understanding of an increasingly important approach to sourcing polymeric materials Includes actionable, relevant information to enable materials engineers and product designers consider biomass-derived polymers in the products they are developing Discusses the environmental impact of biomass conversion to help readers improve the sustainability of their operations Compares petrochemical-derived polymers with bio-based polymers

Best Books

DMCA - Contact