Download Free Hadoop Application Architectures Designing Real World Big Data Applications Book in PDF and EPUB Free Download. You can read online Hadoop Application Architectures Designing Real World Big Data Applications and write the review.

Get expert guidance on architecting end-to-end data management solutions with Apache Hadoop. While many sources explain how to use various components in the Hadoop ecosystem, this practical book takes you through architectural considerations necessary to tie those components together into a complete tailored application, based on your particular use case. To reinforce those lessons, the book’s second section provides detailed examples of architectures used in some of the most commonly found Hadoop applications. Whether you’re designing a new Hadoop application, or planning to integrate Hadoop into your existing data infrastructure, Hadoop Application Architectures will skillfully guide you through the process. This book covers: Factors to consider when using Hadoop to store and model data Best practices for moving data in and out of the system Data processing frameworks, including MapReduce, Spark, and Hive Common Hadoop processing patterns, such as removing duplicate records and using windowing analytics Giraph, GraphX, and other tools for large graph processing on Hadoop Using workflow orchestration and scheduling tools such as Apache Oozie Near-real-time stream processing with Apache Storm, Apache Spark Streaming, and Apache Flume Architecture examples for clickstream analysis, fraud detection, and data warehousing
This book unravels the mystery of Big Data computing and its power to transform business operations. The approach it uses will be helpful to any professional who must present a case for realizing Big Data computing solutions or to those who could be involved in a Big Data computing project. It provides a framework that enables business and technical managers to make optimal decisions necessary for the successful migration to Big Data computing environments and applications within their organizations.
The increase in connected devices in the internet of things (IoT) is leading to an exponential increase in the data that an organization is required to manage. To successfully utilize IoT in businesses, big data analytics are necessary in order to efficiently sort through the increased data. The combination of big data and IoT can thus enable new monitoring services and powerful processing of sensory data streams. The Handbook of Research on Big Data and the IoT is a pivotal reference source that provides vital research on emerging trends and recent innovative applications of big data and IoT, challenges facing organizations and the implications of these technologies on society, and best practices for their implementation. While highlighting topics such as bootstrapping, data fusion, and graph mining, this publication is ideally designed for IT specialists, managers, policymakers, analysts, software engineers, academicians, and researchers.
The go-to guidebook for deploying Big Data solutions withHadoop Today's enterprise architects need to understand how the Hadoopframeworks and APIs fit together, and how they can be integrated todeliver real-world solutions. This book is a practical, detailedguide to building and implementing those solutions, with code-levelinstruction in the popular Wrox tradition. It covers storing datawith HDFS and Hbase, processing data with MapReduce, and automatingdata processing with Oozie. Hadoop security, running Hadoop withAmazon Web Services, best practices, and automating Hadoopprocesses in real time are also covered in depth. With in-depth code examples in Java and XML and the latest onrecent additions to the Hadoop ecosystem, this complete resourcealso covers the use of APIs, exposing their inner workings andallowing architects and developers to better leverage and customizethem. The ultimate guide for developers, designers, and architectswho need to build and deploy Hadoop applications Covers storing and processing data with various technologies,automating data processing, Hadoop security, and deliveringreal-time solutions Includes detailed, real-world examples and code-levelguidelines Explains when, why, and how to use these tools effectively Written by a team of Hadoop experts in theprogrammer-to-programmer Wrox style Professional Hadoop Solutions is the reference enterprisearchitects and developers need to maximize the power of Hadoop.
There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability
As more corporations turn to Hadoop to store and process their most valuable data, the risk of a potential breach of those systems increases exponentially. This practical book not only shows Hadoop administrators and security architects how to protect Hadoop data from unauthorized access, it also shows how to limit the ability of an attacker to corrupt or modify data in the event of a security breach. Authors Ben Spivey and Joey Echeverria provide in-depth information about the security features available in Hadoop, and organize them according to common computer security concepts. You’ll also get real-world examples that demonstrate how you can apply these concepts to your use cases. Understand the challenges of securing distributed systems, particularly Hadoop Use best practices for preparing Hadoop cluster hardware as securely as possible Get an overview of the Kerberos network authentication protocol Delve into authorization and accounting principles as they apply to Hadoop Learn how to use mechanisms to protect data in a Hadoop cluster, both in transit and at rest Integrate Hadoop data ingest into enterprise-wide security architecture Ensure that security architecture reaches all the way to end-user access
Re-architect relational applications to NoSQL, integrate relational database management systems with the Hadoop ecosystem, and transform and migrate relational data to and from Hadoop components. This book covers the best-practice design approaches to re-architecting your relational applications and transforming your relational data to optimize concurrency, security, denormalization, and performance. Winner of IBM’s 2012 Gerstner Award for his implementation of big data and data warehouse initiatives and author of Practical Hadoop Security, author Bhushan Lakhe walks you through the entire transition process. First, he lays out the criteria for deciding what blend of re-architecting, migration, and integration between RDBMS and HDFS best meets your transition objectives. Then he demonstrates how to design your transition model. Lakhe proceeds to cover the selection criteria for ETL tools, the implementation steps for migration with SQOOP- and Flume-based data transfers, and transition optimization techniques for tuning partitions, scheduling aggregations, and redesigning ETL. Finally, he assesses the pros and cons of data lakes and Lambda architecture as integrative solutions and illustrates their implementation with real-world case studies. Hadoop/NoSQL solutions do not offer by default certain relational technology features such as role-based access control, locking for concurrent updates, and various tools for measuring and enhancing performance. Practical Hadoop Migration shows how to use open-source tools to emulate such relational functionalities in Hadoop ecosystem components. What You'll Learn Decide whether you should migrate your relational applications to big data technologies or integrate them Transition your relational applications to Hadoop/NoSQL platforms in terms of logical design and physical implementation Discover RDBMS-to-HDFS integration, data transformation, and optimization techniques Consider when to use Lambda architecture and data lake solutions Select and implement Hadoop-based components and applications to speed transition, optimize integrated performance, and emulate relational functionalities Who This Book Is For Database developers, database administrators, enterprise architects, Hadoop/NoSQL developers, and IT leaders. Its secondary readership is project and program managers and advanced students of database and management information systems.

Best Books