Download Free Homology Theory An Introduction To Algebraic Topology V 145 Graduate Texts In Mathematics Book in PDF and EPUB Free Download. You can read online Homology Theory An Introduction To Algebraic Topology V 145 Graduate Texts In Mathematics and write the review.

This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
Surveys several algebraic invariants, including the fundamental group, singular and Cech homology groups, and a variety of cohomology groups.
This is essentially a book on singular homology and cohomology with special emphasis on products and manifolds. It does not treat homotopy theory except for some basic notions, some examples, and some applica tions of (co-)homology to homotopy. Nor does it deal with general(-ised) homology, but many formulations and arguments on singular homology are so chosen that they also apply to general homology. Because of these absences I have also omitted spectral sequences, their main applications in topology being to homotopy and general (co-)homology theory. Cech cohomology is treated in a simple ad hoc fashion for locally compact subsets of manifolds; a short systematic treatment for arbitrary spaces, emphasizing the universal property of the Cech-procedure, is contained in an appendix. The book grew out of a one-year's course on algebraic topology, and it can serve as a text for such a course. For a shorter basic course, say of half a year, one might use chapters II, III, IV (§§ 1-4), V (§§ 1-5, 7, 8), VI (§§ 3, 7, 9, 11, 12). As prerequisites the student should know the elementary parts of general topology, abelian group theory, and the language of categories - although our chapter I provides a little help with the latter two. For pedagogical reasons, I have treated integral homology only up to chapter VI; if a reader or teacher prefers to have general coefficients from the beginning he needs to make only minor adaptions.
Great first book on algebraic topology. Introduces (co)homology through singular theory.
This book offers a detailed exposition, with exercises, of the basic ideas of algebraic topology: homology, homotopy groups, and cohomology rings. Avoiding excessive generality, the author explains the origins of abstract concepts as they are introduced.
viii homology groups. A weaker result, sufficient nevertheless for our purposes, is proved in Chapter 5, where the reader will also find some discussion of the need for a more powerful in variance theorem and a summary of the proof of such a theorem. Secondly the emphasis in this book is on low-dimensional examples the graphs and surfaces of the title since it is there that geometrical intuition has its roots. The goal of the book is the investigation in Chapter 9 of the properties of graphs in surfaces; some of the problems studied there are mentioned briefly in the Introduction, which contains an in formal survey of the material of the book. Many of the results of Chapter 9 do indeed generalize to higher dimensions (and the general machinery of simplicial homology theory is avai1able from earlier chapters) but I have confined myself to one example, namely the theorem that non-orientable closed surfaces do not embed in three-dimensional space. One of the principal results of Chapter 9, a version of Lefschetz duality, certainly generalizes, but for an effective presentation such a gener- ization needs cohomology theory. Apart from a brief mention in connexion with Kirchhoff's laws for an electrical network I do not use any cohomology here. Thirdly there are a number of digressions, whose purpose is rather to illuminate the central argument from a slight dis tance, than to contribute materially to its exposition.
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Best Books

DMCA - Contact