Download Free How To Fold It The Mathematics Of Linkages Origami And Polyhedra Book in PDF and EPUB Free Download. You can read online How To Fold It The Mathematics Of Linkages Origami And Polyhedra and write the review.

What do proteins and pop-up cards have in common? How is opening a grocery bag different from opening a gift box? How can you cut out the letters for a whole word all at once with one straight scissors cut? How many ways are there to flatten a cube? With the help of 200 colour figures, author Joseph O'Rourke explains these fascinating folding problems starting from high school algebra and geometry and introducing more advanced concepts in tangible contexts as they arise. He shows how variations on these basic problems lead directly to the frontiers of current mathematical research and offers ten accessible unsolved problems for the enterprising reader. Before tackling these, you can test your skills on fifty exercises with complete solutions. The book's website, http://www.howtofoldit.org, has dynamic animations of many of the foldings and downloadable templates for readers to fold or cut out.
Did you know that any straight-line drawing on paper can be folded so that the complete drawing can be cut out with one straight scissors cut? That there is a planar linkage that can trace out any algebraic curve, or even 'sign your name'? Or that a 'Latin cross' unfolding of a cube can be refolded to 23 different convex polyhedra? Over the past decade, there has been a surge of interest in such problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this treatment gives hundreds of results and over 60 unsolved 'open problems' to inspire further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Aimed at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from school students to researchers.
This book constitutes the thoroughly refereed conference proceedings of the 9th International Workshop on Algorithms and Computation, WALCOM 2015, held in Dhaka, Bangladesh, in February 2015. The 26 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 85 submissions. The papers are organized in topical sections on approximation algorithms, data structures and algorithms, computational geometry, combinatorial algorithms, distributed and online algorithms, graph drawing and algorithms, combinatorial problems and complexity, and graph enumeration and algorithms.
is a unique collection of papers illustrating the connections between origami and a wide range of fields. The papers compiled in this two-part set were presented at the 6th International Meeting on Origami Science, Mathematics and Education (10-13 August 2014, Tokyo, Japan). They display the creative melding of origami (or, more broadly, folding) with fields ranging from cell biology to space exploration, from education to kinematics, from abstract mathematical laws to the artistic and aesthetics of sculptural design. This two-part book contains papers accessible to a wide audience, including those interested in art, design, history, and education and researchers interested in the connections between origami and science, technology, engineering, and mathematics. Part 1 contains papers on various aspects of mathematics of origami: coloring, constructibility, rigid foldability, and design algorithms.
Easily Create Origami with Curved Folds and Surfaces Origami—making shapes only through folding—reveals a fascinating area of geometry woven with a variety of representations. The world of origami has progressed dramatically since the advent of computer programs to perform the necessary computations for origami design. 3D Origami Art presents the design methods underlying 3D creations derived from computation. It includes numerous photos and design drawings called crease patterns, which are available for download on the author’s website. Through the book’s clear figures and descriptions, readers can easily create geometric 3D structures out of a set of lines and curves drawn on a 2D plane. The author uses various shapes of sheets such as rectangles and regular polygons, instead of square paper, to create the origami. Many of the origami creations have a 3D structure composed of curved surfaces, and some of them have complicated forms. However, the background theory underlying all the creations is very simple. The author shows how different origami forms are designed from a common theory.
A flexagon is a motion structure that has the appearance of a ring of hinged polygons. It can be flexed to display different pairs of faces, usually in cyclic order. Flexagons can be appreciated as toys or puzzles, as a recreational mathematics topic, and as the subject of serious mathematical study. Workable paper models of flexagons are easy to make and entertaining to manipulate. The mathematics of flexagons is complex, and how a flexagon works is not immediately obvious on examination of a paper model. Recent geometric analysis, included in the book, has improved theoretical understanding of flexagons, especially relationships between different types. This profusely illustrated book is arranged in a logical order appropriate for a textbook on the geometry of flexagons. It is written so that it can be enjoyed at both the recreational mathematics level, and at the serious mathematics level. The only prerequisite is some knowledge of elementary geometry, including properties of polygons. A feature of the book is a compendium of over 100 nets for making paper models of some of the more interesting flexagons, chosen to complement the text. These are accurately drawn and reproduced at half full size. Many of the nets have not previously been published. Instructions for assembling and manipulating the flexagons are included.
We revisit foundational questions in the kinetic theory of linkages and origami, investigating their folding/unfolding behaviors and the computational complexity thereof. In Chapter 2, we exactly settle the complexity of realizability, rigidity, and global rigidy for graphs and linkages in the plane, even when the graphs are (1) promised to avoid crossings in all configurations, or (2) equilateral and required to be drawn without crossings ("matchstick graphs"): these problems are complete for the class IR defined by the Existential Theory of the Reals, or its complement. To accomplish this, we prove a strong form of Kempe's Universality Theorem for linkages that avoid crossings. Chapter 3 turns to "self-touching" linkage configurations, whose bars are allowed to rest against each other without passing through. We propose an elegant model for representing such configurations using infinitesimal perturbations, working over a field R(e) that includes formal infinitesimals. Using this model and the powerful Tarski-Seidenberg "transfer" principle for real closed fields, we prove a self-touching version of the celebrated Expansive Carpenter's Rule Theorem. We switch to folding polyhedra in Chapter 4: we show a simple technique to continuously flatten the surface of any convex polyhedron without distorting intrinsic surface distances or letting the surface pierce itself. This origami motion is quite general, and applies to convex polytopes of any dimension. To prove that no piercing occurs, we apply the same infinitesimal techniques from Chapter 3 to formulate a new formal model of self-touching origami that is simpler to work with than existing models. Finally, Chapter 5 proves polyhedra are hard to edge unfold: it is NP-hard to decide whether a polyhedron may be cut along edges and unfolded into a non-overlapping net. This edge unfolding problem is not known to be solvable in NP due to precision issues, but we show this is not the only obstacle: it is NP complete for orthogonal polyhedra with integer coordinates (all of whose unfolding also have integer coordinates)

Best Books