Download Free Internet Environments For Science Education Book in PDF and EPUB Free Download. You can read online Internet Environments For Science Education and write the review.

Internet Environments for Science Education synthesizes 25 years of research to identify effective, technology-enhanced ways to convert students into lifelong science learners--one inquiry project at a time. It offers design principles for development of innovations; features tested, customizable inquiry projects that students, teachers, and professional developers can enact and refine; and introduces new methods and assessments to investigate the impact of technology on inquiry learning. The methodology--design-based research studies--enables investigators to capture the impact of innovations in the complex, inertia-laden educational enterprise and to use these findings to improve the innovation. The approach--technology-enhanced inquiry--takes advantage of global, networked information resources, sociocognitive research, and advances in technology combined in responsive learning environments. Internet Environments for Science Education advocates leveraging inquiry and technology to reform the full spectrum of science education activities--including instruction, curriculum, policy, professional development, and assessment. The book offers: *the knowledge integration perspective on learning, featuring the interpretive, cultural, and deliberate natures of the learner; *the scaffolded knowledge integration framework on instruction summarized in meta-principles and pragmatic principles for design of inquiry instruction; *a series of learning environments, including the Computer as Learning Partner (CLP), the Knowledge Integration Environment (KIE), and the Web-based Inquiry Science Environment (WISE) that designers can use to create new inquiry projects, customize existing projects, or inspire thinking about other learning environments; *curriculum design patterns for inquiry projects describing activity sequences to promote critique, debate, design, and investigation in science; *a partnership model establishing activity structures for teachers, pedagogical researchers, discipline experts, and technologists to jointly design and refine inquiry instruction; *a professional development model involving mentoring by an expert teacher; *projects about contemporary controversy enabling students to explore the nature of science; *a customization process guiding teachers to adapt inquiry projects to their own students, geographical characteristics, curriculum framework, and personal goals; and *a Web site providing additional links, resources, and community tools at www.InternetScienceEducation.org
Contributions by eminent scholars from around the globe provide analysis of complexity in learning environments from a cognitive perspective and offer suggestions for educational practice and future research on complexity.
"This book presents best practice environments to implement e-collaborative knowledge construction, providing psychological and technical background information about issues present in such scenarios and presents methods to improve online learning environments"--Provided by publisher.
The continued growth in general studies and liberal arts and science programs online has led to a rise in the number of students whose science learning experiences are web-based. However, little is known about what is actually going on in web-based science courses at the level of the disciplines within liberal arts and sciences or the corresponding course design features. Online Science Learning: Best Practices and Technologies reviews trends and efforts in web-based science instruction and evaluates contemporary philosophies and pedagogies of online science instruction. This title on an emergent and vital area of education clearly demonstrates how to enrich the academic character and quality of web-based science instruction.
Science Learning and Instruction describes advances in understanding the nature of science learning and their implications for the design of science instruction. The authors show how design patterns, design principles, and professional development opportunities coalesce to create and sustain effective instruction in each primary scientific domain: earth science, life science, and physical science. Calling for more in depth and less fleeting coverage of science topics in order to accomplish knowledge integration, the book highlights the importance of designing the instructional materials, the examples that are introduced in each scientific domain, and the professional development that accompanies these materials. It argues that unless all these efforts are made simultaneously, educators cannot hope to improve science learning outcomes. The book also addresses how many policies, including curriculum, standards, guidelines, and standardized tests, work against the goal of integrative understanding, and discusses opportunities to rethink science education policies based on research findings from instruction that emphasizes such understanding.
This book shares the lessons learned by a large community of educational researchers and science teachers as they designed, developed, and investigated a new technology-enhanced learning environment known as WISE: The Web-based Inquiry Science Environment. WISE offers a collection of free, customizable units on topics central to the science standards as well as guidance on how to exploit the Internet to improve learning and instruction in the science classroom (grades 6-12). Hundreds of teachers and over 100,000 students have learned from WISE projects taught in English, Norwegian, Dutch, German, Hebrew, Japanese, Chinese, and Korean.
"This book explores various learning mediums and their consequences within a classroom context to synchronize understanding within the schooling fields"--Provided by publisher.

Best Books

DMCA - Contact