Download Free Interval Analysis And Automatic Result Verification De Gruyter Studies In Mathematics Book in PDF and EPUB Free Download. You can read online Interval Analysis And Automatic Result Verification De Gruyter Studies In Mathematics and write the review.

This self-contained text is a step-by-step introduction and a complete overview of interval computation and result verification, a subject whose importance has steadily increased over the past many years. The author, an expert in the field, gently presents the theory of interval analysis through many examples and exercises, and guides the reader from the basics of the theory to current research topics in the mathematics of computation. Contents Preliminaries Real intervals Interval vectors, interval matrices Expressions, P-contraction, ε-inflation Linear systems of equations Nonlinear systems of equations Eigenvalue problems Automatic differentiation Complex intervals
This book covers the basics of noncommutative geometry (NCG) and its applications in topology, algebraic geometry, and number theory. The author takes up the practical side of NCG and its value for other areas of mathematics. A brief survey of the main parts of NCG with historical remarks, bibliography, and a list of exercises is included. The presentation is intended for graduate students and researchers with interests in NCG, but will also serve nonexperts in the field. Contents Part I: Basics Model examples Categories and functors C∗-algebras Part II: Noncommutative invariants Topology Algebraic geometry Number theory Part III: Brief survey of NCG Finite geometries Continuous geometries Connes geometries Index theory Jones polynomials Quantum groups Noncommutative algebraic geometry Trends in noncommutative geometry
The general topic of this book is the ergodic behavior of Markov processes. A detailed introduction to methods for proving ergodicity and upper bounds for ergodic rates is presented in the first part of the book, with the focus put on weak ergodic rates, typical for Markov systems with complicated structure. The second part is devoted to the application of these methods to limit theorems for functionals of Markov processes. The book is aimed at a wide audience with a background in probability and measure theory. Some knowledge of stochastic processes and stochastic differential equations helps in a deeper understanding of specific examples. Contents Part I: Ergodic Rates for Markov Chains and Processes Markov Chains with Discrete State Spaces General Markov Chains: Ergodicity in Total Variation MarkovProcesseswithContinuousTime Weak Ergodic Rates Part II: Limit Theorems The Law of Large Numbers and the Central Limit Theorem Functional Limit Theorems
Band 2 von Numerik gewöhnlicher Differentialgleichungen beschäftigt sich mit der Lösung nichtlinearer Zweipunkt-Randwertprobleme mittels Schiessverfahren. Insbesondere werden auch numerische Techniken zur Berechnung und Darstellung der Lösungsmannigfaltigkeit parameterabhängiger Probleme in Form von Bifurkationsdiagrammen vorgestellt. Hierbei spielen erweiterte und transformierte Randwertprobleme für das Studium von Grenz- und Bifurkationspunkten eine zentrale Rolle. Die Darstellung des Stoffes erfolgt in leicht verständlicher und anschaulicher Form. Der Zweibänder ist für Einführungsvorlesungen sowie als Nachschlagewerk konzipiert und beide Bände decken den gesamten Bereich von den klassischen Techniken bis hin zu den modernen Algorithmen ab. Die Verfahren werden mathematisch exakt beschrieben und deren Umsetzung in eine Programmiersprache anhand von Beispielen in MATLAB illustriert. Lösung nichtlinearer RWPe mit modernen Schiessverfahren Mit einem neuen Kapitel über parameterabhängige RWPe Für Studenten der Mathematik, Physik und den Ingenieurwissenschaften Enthält eine Vielzahl von Beispielen Mit MATLAB-Programmen der wichtigsten Schiessverfahren (auch online erhältlich) Auch im Set mit Band 1: »Anfangswertprobleme und lineare Randwertprobleme« erhältlich Inhalt Nichtlineare Zweipunkt-Randwertprobleme Numerische Analyse von Einfach-Schießtechniken Numerische Analyse von Mehrfach-Schießtechniken Numerische Behandlung von parameterabhängigen Zweipunkt-Randwertproblemen Numerische Lösung nichtlinearer algebraischer Gleichungssysteme
The subject of this book is analysis on Wiener space by means of Dirichlet forms and Malliavin calculus. There are already several literature on this topic, but this book has some different viewpoints. First the authors review the theory of Dirichlet forms, but they observe only functional analytic, potential theoretical and algebraic properties. They do not mention the relation with Markov processes or stochastic calculus as discussed in usual books (e.g. Fukushima’s book). Even on analytic properties, instead of mentioning the Beuring-Deny formula, they discuss “carré du champ” operators introduced by Meyer and Bakry very carefully. Although they discuss when this “carré du champ” operator exists in general situation, the conditions they gave are rather hard to verify, and so they verify them in the case of Ornstein-Uhlenbeck operator in Wiener space later. (It should be noticed that one can easily show the existence of “carré du champ” operator in this case by using Shigekawa’s H-derivative.) In the part on Malliavin calculus, the authors mainly discuss the absolute continuity of the probability law of Wiener functionals. The Dirichlet form corresponds to the first derivative only, and so it is not easy to consider higher order derivatives in this framework. This is the reason why they discuss only the first step of Malliavin calculus. On the other hand, they succeeded to deal with some delicate problems (the absolute continuity of the probability law of the solution to stochastic differential equations with Lipschitz continuous coefficients, the domain of stochastic integrals (Itô-Ramer-Skorokhod integrals), etc.). This book focuses on the abstract structure of Dirichlet forms and Malliavin calculus rather than their applications. However, the authors give a lot of exercises and references and they may help the reader to study other topics which are not discussed in this book. Zentralblatt Math, Reviewer: S.Kusuoka (Hongo)

Best Books

DMCA - Contact