Download Free Introduction To Astronomy And Cosmology Book in PDF and EPUB Free Download. You can read online Introduction To Astronomy And Cosmology and write the review.

Introduction to Astronomy & Cosmology is a modernundergraduate textbook, combining both the theory behind astronomywith the very latest developments. Written for science students,this book takes a carefully developed scientific approach to thisdynamic subject. Every major concept is accompanied by a workedexample with end of chapter problems to improve understanding Includes coverage of the very latest developments such asdouble pulsars and the dark galaxy. Beautifully illustrated in full colour throughout Supplementary web site with many additional full colour images,content, and latest developments.
This book outlines the fundamentals of this fascinating branch of astronomy, and explores the forefront of astronomical research. The author’s passion for the topic shines with an intensity that rivals the book’s many colourful illustrations, and will deeply inspire the reader. The cogently written text introduces the reader to the astronomy of galaxies, their structure, their active galactic nuclei, their evolution and their large scale distribution. Starting with a detailed description of our Milky Way, and a review of modern observational and theoretical cosmology, the book goes on to examine the formation of structures and astronomical objects in the early universe.
Astronomy is the field of science devoted to the study of astronomical objects, such as stars, galaxies, and nebulae. Astronomers have gathered a wealth of knowledge about the universe through hundreds of years of painstaking observations. These observations are interpreted by the use of physical and chemical laws familiar to mankind. These interpretations supply information about the nature of these astronomical objects, allowing for the deduction of their surface and interior conditions. The science associated with these interpretations is called astrophysics. An Introduction to Astronomy and Astrophysics offers a comprehensive introduction to astronomy and astrophysics, complete with illustrative examples and illuminating homework problems. Requiring a familiarity with basic physics and mathematics, this undergraduate-level textbook: Addresses key physics concepts relevant to stellar observations, including radiation, electromagnetic spectrum, photometry, continuous and discrete spectrum, and spectral lines Describes instruments used for astronomical observations as well as how the radiation received is characterized and interpreted to determine the properties of stars Examines the structure of stars, the basic equations which explain stars in equilibrium, and the fusion reactions occurring in stellar cores Discusses the evolution of stars, the solar system, the dynamics of galaxies, and the fundamentals of modern cosmology Explores the universe at high redshifts, where it is dominated by objects such as active galaxies Solutions manual and figure slides available with qualifying course adoption An Introduction to Astronomy and Astrophysics teaches students how to interpret the night sky, providing them with a critical understanding of the stars and other heavenly bodies.
This is a truly astonishing book, invaluable for anyone with an interest in astronomy. Physics Bulletin Just the thing for a first year university science course. Nature This is a beautiful book in both concept and execution. Sky & Telescope
This book began as a series of lecture notes for an introductory astronomy course I have been teaching at the University of Bonn since 2001. This annual lecture course is aimed at students in the first phase of their studies. Most are enrolled in physics degrees and choose astronomy as one of their subjects. This series of lectures forms the second part of the introductory course, and since the majority of students have previously attended the first part, I therefore assume that they have acquired a basic knowledge of astronomical nomenclature and conventions, as well as of the basic properties of stars. Thus, in this part of the course, I concentrate mainly on extragalactic astronomy and cosmology, beginning with a discussion of our MilkyWay as a typical (spiral) galaxy. To extend the potential readership of this book to a larger audience, the basics of astronomy and relevant facts about radiation fields and stars are summarized in the appendix. The goal of the lecture course, and thus also of this book, is to confront physics students with astronomy early in their studies. Since their knowledge of physics is limited in their first year,many aspects of the material covered here need to be explained with simplified arguments. However, it is surprising to what extent modern extragalactic astronomy can be treated with such arguments. All the material in this book is covered in the lecture course, though not all details are written up here. I believe that only by covering this wide range of topics can the students be guided to the forefront of our present astrophysical knowledge. Hence, they learn a lot about issues which are currently not settled and under intense discussion. It is also this aspect which I consider of great importance for the role of astronomy in the framework of a physics program, since in most other sub-disciplines of physics the limits of our current knowledge are approached only at a later stage in the student’s education. In particular, the topic of cosmology is usually met with interest by students. Despite the large amount of material, most of them are able to digest and understand what they are taught, as evidenced from the oral examinations following this course – and this is not small-number statistics: my colleague Klaas de Boer and I together grade about 100 oral examinations per year, covering both parts of the introductory course. Some critical comments coming from students concern the extent of the material as well as its level. However, I do not see a rational reason why the level of an astronomy lecture should be lower than that of one in physics or mathematics. Why did I turn this into a book? When preparing the concept for my lecture course, I soon noticed that there is no book which I can (or want to) follow. In particular, there are only a few astronomy textbooks in German, and they do not treat extragalactic astronomy and cosmology nearly to the extent and depth as I wanted for this course. Also, the choice of books on these topics in English is fairly limited – whereas a number of excellent introductory textbooks exist, most shy away from technical treatments of issues. However, many aspects can be explained better if a technical argument is also given. Thus I hope that this text presents a field of modern astrophysics at a level suitable for the aforementioned group of people. A further goal is to cover extragalactic astronomy to a level such that the reader should feel comfortable turning to more professional literature. When being introduced to astronomy, students face two different problems simultaneously. On the one hand, they should learn to understand astrophysical arguments – such as those leading to the conclusion that the central engine in AGNs is a black hole. On the other hand, they are confronted with a multitude of new terms, concepts, and classifications, many of which can only be considered as historical burdens. Examples here are the classification of supernovae which, although based on observational criteria, do not agree with our current understanding of the supernova phenomenon, and the classification of the various types of AGNs. In the lectures, I have tried to separate these two issues, clearly indicating when facts are presented where the students should “just take note”, or when astrophysical connections are uncovered which help to understand the properties of cosmic objects. The lat ter aspects are discussed in considerably more detail. I hope this distinction can still be clearly seen in this written version. The order of the material in the course and in this book accounts for the fact that students in their first year of physics studies have a steeply rising learning curve; hence, I have tried to order the material partly according to its difficulty. For example, homogeneous world models are described first, whereas only later are the processes of structure formation discussed, motivated in the meantime by the treatment of galaxy clusters. The topic and size of this book imply the necessity of a selection of topics. I want to apologize here to all of those colleagues whose favorite subject is not covered at the depth that they feel it deserves. I also took the freedom to elaborate on my own research topic – gravitational lensing – somewhat disproportionately. If it requires a justification: the basic equations of gravitational lensing are sufficiently simple that they and their consequences can be explained at an early stage in astronomy education. With a field developing as quickly as the subject of this book, it is unavoidable that parts of the text will become somewhat out-of-date quickly. I have attempted to include some of the most recent results of the respective topics, but there are obvious limits. For example, just three weeks before the first half of the manuscript was sent to the publisher the three-year results fromWMAP were published. Since these results are compatible with the earlier one-year data, I decided not to include them in this text. Many students are not only interested in the physical aspects of astronomy, they are also passionate observational astronomers. Many of them have been active in astronomy for years and are fascinated by phenomena occurring beyond the Earth. I have tried to provide a glimpse of this fascination at some points in the lecture course, for instance through some historical details, by discussing specific observations or instruments, or by highlighting some of the great achievements of modern cosmology. At such points, the text may deviate from the more traditional “scholarly” style. Producing the lecture notes, and their extension to a textbook, would have been impossible without the active help of several students and colleagues, whom I want to thank here. Jan Hartlap, Elisabeth Krause and Anja von der Linden made numerous suggestions for improving the text, produced graphics or searched for figures, and TEXed tables – deep thanks go to them. Oliver Czoske, Thomas Erben and Patrick Simon read the whole German version of the text in detail and made numerous constructive comments which led to a clear improvement of the text. Klaas de Boer and Thomas Reiprich read and commented on parts of this text. Searching for the sources of the figures, Leonardo Castaneda, Martin Kilbinger, Jasmin Pierloz and Peter Watts provided valuable help. A first version of the English translation of the book was produced by Ole Markgraf, and I thank him for this heroic task. Furthermore, Kathleen Schrüfer, Catherine Vlahakis and Peter Watts read the English version and made zillions of suggestions and corrections – I am very grateful to their invaluable help. Thomas Erben, Mischa Schirmer and Tim Schrabback produced the cover image very quickly after our HST data of the cluster RXJ 1347−1145 were taken. Finally, I thank all my colleagues and students who provided encouragement and support for finishing this book. The collaboration with Springer-Verlag was very fruitful. Thanks toWolf Beiglböck and Ramon Khanna for their encouragement and constructive collaboration. Bea Laier offered to contact authors and publishers to get the copyrights for reproducing figures – without her invaluable help, the publication of the book would have been delayed substantially. The interaction with LE-TEX, where the bookwas produced, and in particular with Uwe Matrisch, was constructive as well. Furthermore, I thank all those colleagues who granted permission to reproduce their figures here, as well as the public relations departments of astronomical organizations and institutes who, through their excellent work in communicating astronomical knowledge to the general public, play an invaluable role in our profession. In addition, they provide a rich source of pictorial material of which I made ample use for this book. Representative of those, I would like to mention the European Southern Observatory (ESO), the Space Telescope Science Institute (STScI), the NASA/SAO/CXC archive for Chandra data and the Legacy Archive for Microwave Background Data Analysis (LAMBDA).
Designed for students who have a basic understanding of physics and mathematics, this text provides a fundamental, three-in-one introduction to astronomy, astrophysics, and cosmology. The astronomy section explores fundamental topics such as the celestial coordinate system, stellar classification schemes, H-R diagrams, and the masses and radii of stars. The astrophysics section addresses stellar structure, stellar atmospheres, energy generation in stars, and nucleosynthesis. Also covering galactic structure and rotation, the cosmology section introduces the Robertson-Walker metric and Friedman models of the universe and discusses the present status of the Hubble constant along with problems associated with the age of the universe. Numerous problems, diagrams, and up-to-date references make this an ideal introductory text for graduate courses in physics, mathematics, space physics, or any program for which astronomy is an option.
This new edition of the classic textbook The New Cosmos presents a comprehensive introductory survey of the whole field of astronomy and astrophysics. Among the topics covered are: - Classical astronomy and the Solar System - Instruments and observational methods - The Sun and the stars - The Milky Way and other galaxies - Cosmology - The origin of the Solar System - The evolution of the Earth and of life The observational methods and results of astronomical research as well as their theoretical foundations and interrelations are presented in an understandable format. The rapid progress of observational techniques and of theoretical understanding in the past decade are introduced and summarized in this timely and readable volume. This revised and extended new printing demonstrates the rapid advances in astronomical research and observation in the three years since the appearance of the 5th edition. The most important new results can be found within, providing in particular up-to-date information on our solar system, neutrino radiation from the Sun, the farthest galaxies and quasars and the development of the Universe.

Best Books