Download Free Jordan Real And Lie Structures In Operator Algebras Mathematics And Its Applications Book in PDF and EPUB Free Download. You can read online Jordan Real And Lie Structures In Operator Algebras Mathematics And Its Applications and write the review.

The theory of operator algebras acting on a Hilbert space was initiated in thirties by papers of Murray and von Neumann. In these papers they have studied the structure of algebras which later were called von Neu mann algebras or W* -algebras. They are weakly closed complex *-algebras of operators on a Hilbert space. At present the theory of von Neumann algebras is a deeply developed theory with various applications. In the framework of von Neumann algebras theory the study of fac tors (i.e. W* -algebras with trivial centres) is very important, since they are comparatively simple and investigation of general W* -algebras can be reduced to the case of factors. Therefore the theory of factors is one of the main tools in the structure theory of von Neumann algebras. In the middle of sixtieth Topping [To 1] and Stormer [S 2] have ini tiated the study of Jordan (non associative and real) analogues of von Neumann algebras - so called JW-algebras, i.e. real linear spaces of self adjoint opera.tors on a complex Hilbert space, which contain the identity operator 1. closed with respect to the Jordan (i.e. symmetrised) product INTRODUCTION 2 x 0 y = ~(Xy + yx) and closed in the weak operator topology. The structure of these algebras has happened to be close to the struc ture of von Neumann algebras and it was possible to apply ideas and meth ods similar to von Neumann algebras theory in the study of JW-algebras.
In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.
The main part of the book is based on a one semester graduate course for students in mathematics. I have attempted to develop the theory of hyperbolic systems of differen tial equations in a systematic way, making as much use as possible ofgradient systems and their algebraic representation. However, despite the strong sim ilarities between the development of ideas here and that found in a Lie alge bras course this is not a book on Lie algebras. The order of presentation has been determined mainly by taking into account that algebraic representation and homomorphism correspondence with a full rank Lie algebra are the basic tools which require a detailed presentation. I am aware that the inclusion of the material on algebraic and homomorphism correspondence with a full rank Lie algebra is not standard in courses on the application of Lie algebras to hyperbolic equations. I think it should be. Moreover, the Lie algebraic structure plays an important role in integral representation for solutions of nonlinear control systems and stochastic differential equations yelding results that look quite different in their original setting. Finite-dimensional nonlin ear filters for stochastic differential equations and, say, decomposability of a nonlinear control system receive a common understanding in this framework.
Among all areas of mathematics, algebra is one of the best suited to find applications within the frame of our booming technological society. The thirty-eight articles in this volume encompass the proceedings of the International Conference on Algebra and Its Applications (Athens, OH, 1999), which explored the applications and interplay among the disciplines of ring theory, linear algebra, and coding theory. The presentations collected here reflect the dialogue between mathematicians involved in theoretical aspects of algebra and mathematicians involved in solving problems where state-of-the-art research tools may be used and applied. This Contemporary Mathematics series volume communicates the potential for collaboration among those interested in exploring the wealth of applications for abstract algebra in fields such as information and coding. The expository papers would serve well as supplemental reading in graduate seminars.
This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This first volume focuses on the non-associative generalizations of (associative) C*-algebras provided by the so-called non-associative Gelfand–Naimark and Vidav–Palmer theorems, which give rise to alternative C*-algebras and non-commutative JB*-algebras, respectively. The relationship between non-commutative JB*-algebras and JB*-triples is also fully discussed. The second volume covers Zel'manov's celebrated work in Jordan theory to derive classification theorems for non-commutative JB*-algebras and JB*-triples, as well as other topics. The book interweaves pure algebra, geometry of normed spaces, and complex analysis, and includes a wealth of historical comments, background material, examples and exercises. The authors also provide an extensive bibliography.
This book provides a comprehensive exposition of the theory of braids, beginning with the basic mathematical definitions and structures. Among the many topics explained in detail are: the braid group for various surfaces; the solution of the word problem for the braid group; braids in the context of knots and links (Alexander's theorem); Markov's theorem and its use in obtaining braid invariants; the connection between the Platonic solids (regular polyhedra) and braids; the use of braids in the solution of algebraic equations. Dirac's problem and special types of braids termed Mexican plaits are also discussed. Audience: Since the book relies on concepts and techniques from algebra and topology, the authors also provide a couple of appendices that cover the necessary material from these two branches of mathematics. Hence, the book is accessible not only to mathematicians but also to anybody who might have an interest in the theory of braids. In particular, as more and more applications of braid theory are found outside the realm of mathematics, this book is ideal for any physicist, chemist or biologist who would like to understand the mathematics of braids. With its use of numerous figures to explain clearly the mathematics, and exercises to solidify the understanding, this book may also be used as a textbook for a course on knots and braids, or as a supplementary textbook for a course on topology or algebra.
This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.

Best Books

DMCA - Contact