Download Free Making And Breaking Mathematical Sense Histories And Philosophies Of Mathematical Practice Book in PDF and EPUB Free Download. You can read online Making And Breaking Mathematical Sense Histories And Philosophies Of Mathematical Practice and write the review.

In line with the emerging field of philosophy of mathematical practice, this book pushes the philosophy of mathematics away from questions about the reality and truth of mathematical entities and statements and toward a focus on what mathematicians actually do—and how that evolves and changes over time. How do new mathematical entities come to be? What internal, natural, cognitive, and social constraints shape mathematical cultures? How do mathematical signs form and reform their meanings? How can we model the cognitive processes at play in mathematical evolution? And how does mathematics tie together ideas, reality, and applications? Roi Wagner uniquely combines philosophical, historical, and cognitive studies to paint a fully rounded image of mathematics not as an absolute ideal but as a human endeavor that takes shape in specific social and institutional contexts. The book builds on ancient, medieval, and modern case studies to confront philosophical reconstructions and cutting-edge cognitive theories. It focuses on the contingent semiotic and interpretive dimensions of mathematical practice, rather than on mathematics' claim to universal or fundamental truths, in order to explore not only what mathematics is, but also what it could be. Along the way, Wagner challenges conventional views that mathematical signs represent fixed, ideal entities; that mathematical cognition is a rigid transfer of inferences between formal domains; and that mathematics’ exceptional consensus is due to the subject’s underlying reality. The result is a revisionist account of mathematical philosophy that will interest mathematicians, philosophers, and historians of science alike.
This book gives a coherent and unified presentation of a new direction of work in philosophy of mathematics. This new approach in philosophy of mathematics requires extensive attention to mathematical practice and provides philosophical analyses of important novel characteristics of contemporary (twentieth century) mathematics and of many aspects of mathematical activity-such as visualization, explanation, understanding etc.-- which escape purely formal logicaltreatment.The book consists of a lengthy introduction by the editor and of eight chapters written by some of the very best scholars in this area. Each chapter consists of a short introduction to the general topic of the chapter and of a longer research article in the very same area. Theeight topics selected represent a broad spectrum of the contemporary philosophical reflection on different aspects of mathematical practice: Diagrammatic reasoning and representational systems; Visualization; Mathematical Explanation; Purity of Methods; Mathematical Concepts; Philosophical relevance of category theory; Philosophical aspects of computer science in mathematics; Philosophical impact of recent developments in mathematical physics.
This introduction to the philosophy of mathematics focuses on contemporary debates in an important and central area of philosophy. The reader is taken on a fascinating and entertaining journey through some intriguing mathematical and philosophical territory, including such topics as the realism/anti-realism debate in mathematics, mathematical explanation, the limits of mathematics, the significance of mathematical notation, inconsistent mathematics and the applications of mathematics. Each chapter has a number of discussion questions and recommended further reading from both the contemporary literature and older sources. Very little mathematical background is assumed and all of the mathematics encountered is clearly introduced and explained using a wide variety of examples. The book is suitable for an undergraduate course in philosophy of mathematics and, more widely, for anyone interested in philosophy and mathematics.
History and Philosophy of Modern Mathematics was first published in 1988. Minnesota Archive Editions uses digital technology to make long-unavailable books once again accessible, and are published unaltered from the original University of Minnesota Press editions. The fourteen essays in this volume build on the pioneering effort of Garrett Birkhoff, professor of mathematics at Harvard University, who in 1974 organized a conference of mathematicians and historians of modern mathematics to examine how the two disciplines approach the history of mathematics. In History and Philosophy of Modern Mathematics, William Aspray and Philip Kitcher bring together distinguished scholars from mathematics, history, and philosophy to assess the current state of the field. Their essays, which grow out of a 1985 conference at the University of Minnesota, develop the basic premise that mathematical thought needs to be studied from an interdisciplinary perspective. The opening essays study issues arising within logic and the foundations of mathematics, a traditional area of interest to historians and philosophers. The second section examines issues in the history of mathematics within the framework of established historical periods and questions. Next come case studies that illustrate the power of an interdisciplinary approach to the study of mathematics. The collection closes with a look at mathematics from a sociohistorical perspective, including the way institutions affect what constitutes mathematical knowledge.
Medieval Europe was a meeting place for the Christian, Jewish, and Islamic civilizations, and the fertile intellectual exchange of these cultures can be seen in the mathematical developments of the time. This sourcebook presents original Latin, Hebrew, and Arabic sources of medieval mathematics, and shows their cross-cultural influences. Most of the Hebrew and Arabic sources appear here in translation for the first time. Readers will discover key mathematical revelations, foundational texts, and sophisticated writings by Latin, Hebrew, and Arabic-speaking mathematicians, including Abner of Burgos's elegant arguments proving results on the conchoid—a curve previously unknown in medieval Europe; Levi ben Gershon’s use of mathematical induction in combinatorial proofs; Al-Mu’taman Ibn Hūd’s extensive survey of mathematics, which included proofs of Heron’s Theorem and Ceva’s Theorem; and Muhyī al-Dīn al-Maghribī’s interesting proof of Euclid’s parallel postulate. The book includes a general introduction, section introductions, footnotes, and references. The Sourcebook in the Mathematics of Medieval Europe and North Africa will be indispensable to anyone seeking out the important historical sources of premodern mathematics.
Most philosophers of mathematics treat it as isolated, timeless, ahistorical, inhuman. Reuben Hersh argues the contrary, that mathematics must be understood as a human activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a social context. Hersh pulls the screen back to reveal mathematics as seen by professionals, debunking many mathematical myths, and demonstrating how the "humanist" idea of the nature of mathematics more closely resembles how mathematicians actually work. At the heart of his book is a fascinating historical account of the mainstream of philosophy--ranging from Pythagoras, Descartes, and Spinoza, to Bertrand Russell, David Hilbert, and Rudolph Carnap--followed by the mavericks who saw mathematics as a human artifact, including Aristotle, Locke, Hume, Mill, and Lakatos. What is Mathematics, Really? reflects an insider's view of mathematical life, and will be hotly debated by anyone with an interest in mathematics or the philosophy of science.
This book deals with a topic that has been largely neglected by philosophers of science to date: the ability to refer and analyze in tandem. On the basis of a set of philosophical case studies involving both problems in number theory and issues concerning time and cosmology from the era of Galileo, Newton and Leibniz up through the present day, the author argues that scientific knowledge is a combination of accurate reference and analytical interpretation. In order to think well, we must be able to refer successfully, so that we can show publicly and clearly what we are talking about. And we must be able to analyze well, that is, to discover productive and explanatory conditions of intelligibility for the things we are thinking about. The book’s central claim is that the kinds of representations that make successful reference possible and those that make successful analysis possible are not the same, so that significant scientific and mathematical work typically proceeds by means of a heterogeneous discourse that juxtaposes and often superimposes a variety of kinds of representation, including formal and natural languages as well as more iconic modes. It demonstrates the virtues and necessity of heterogeneity in historically central reasoning, thus filling an important gap in the literature and fostering a new, timely discussion on the epistemology of science and mathematics.

Best Books

DMCA - Contact