Download Free Optimized C Proven Techniques For Heightened Performance Book in PDF and EPUB Free Download. You can read online Optimized C Proven Techniques For Heightened Performance and write the review.

In today’s fast and competitive world, a program’s performance is just as important to customers as the features it provides. This practical guide teaches developers performance-tuning principles that enable optimization in C++. You’ll learn how to make code that already embodies best practices of C++ design run faster and consume fewer resources on any computer—whether it’s a watch, phone, workstation, supercomputer, or globe-spanning network of servers. Author Kurt Guntheroth provides several running examples that demonstrate how to apply these principles incrementally to improve existing code so it meets customer requirements for responsiveness and throughput. The advice in this book will prove itself the first time you hear a colleague exclaim, “Wow, that was fast. Who fixed something?” Locate performance hot spots using the profiler and software timers Learn to perform repeatable experiments to measure performance of code changes Optimize use of dynamically allocated variables Improve performance of hot loops and functions Speed up string handling functions Recognize efficient algorithms and optimization patterns Learn the strengths—and weaknesses—of C++ container classes View searching and sorting through an optimizer’s eye Make efficient use of C++ streaming I/O functions Use C++ thread-based concurrency features effectively
As scientific and engineering projects grow larger and more complex, it is increasingly likely that those projects will be written in C++. With embedded hardware growing more powerful, much of its software is moving to C++, too. Mastering C++ gives you strong skills for programming at nearly every level, from “close to the hardware” to the highest-level abstractions. In short, C++ is a language that scientific and technical practitioners need to know. Peter Gottschling’s Discovering Modern C++ is an intensive introduction that guides you smoothly to sophisticated approaches based on advanced features. Gottschling introduces key concepts using examples from many technical problem domains, drawing on his extensive experience training professionals and teaching C++ to students of physics, math, and engineering. This book is designed to help you get started rapidly and then master increasingly robust features, from lambdas to expression templates. You’ll also learn how to take advantage of the powerful libraries available to C++ programmers: both the Standard Template Library (STL) and scientific libraries for arithmetic, linear algebra, differential equations, and graphs. Throughout, Gottschling demonstrates how to write clear and expressive software using object orientation, generics, metaprogramming, and procedural techniques. By the time you’re finished, you’ll have mastered all the abstractions you need to write C++ programs with exceptional quality and performance.
Book explains how to maximize the benefits of Intel's new dual-core and multi-core processors through a portable C++ library that works on Windows, Linux, Macintosh, and Unix systems.
This textbook, first published in 2003, emphasises the fundamentals and the mathematics underlying computer graphics. The minimal prerequisites, a basic knowledge of calculus and vectors plus some programming experience in C or C++, make the book suitable for self study or for use as an advanced undergraduate or introductory graduate text. The author gives a thorough treatment of transformations and viewing, lighting and shading models, interpolation and averaging, Bézier curves and B-splines, ray tracing and radiosity, and intersection testing with rays. Additional topics, covered in less depth, include texture mapping and colour theory. The book covers some aspects of animation, including quaternions, orientation, and inverse kinematics, and includes source code for a Ray Tracing software package. The book is intended for use along with any OpenGL programming book, but the crucial features of OpenGL are briefly covered to help readers get up to speed. Accompanying software is available freely from the book's web site.
Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises
DMCA - Contact