Download Free Philosophical Concepts In Physics The Historical Relation Between Philosophy And Scientific Theories Book in PDF and EPUB Free Download. You can read online Philosophical Concepts In Physics The Historical Relation Between Philosophy And Scientific Theories and write the review.

This book examines a selection of philosophical issues in the context of specific episodes in the development of physical theories and presents scientific advances within their historical and philosophical contexts. Philosophical considerations have played an essential and ineliminable role in the actual practice of science. The book begins with some necessary introduction to the history of ancient and early modern science, but emphasizes the two great watersheds of twentieth-century physics: relativity and quantum mechanics. At times the term "construction" may seem more appropriate than "discovery" for the way theories have developed and, especially in later chapters, the discussion focuses on the influence of historical, philosophical and even social factors on the form and content of scientific theories.
This book explores the relationship between the content of chemistry education and the history and philosophy of science (HPS) framework that underlies such education. It discusses the need to present an image that reflects how chemistry developed and progresses. It proposes that chemistry should be taught the way it is practiced by chemists: as a human enterprise, at the interface of scientific practice and HPS. Finally, it sets out to convince teachers to go beyond the traditional classroom practice and explore new teaching strategies. The importance of HPS has been recognized for the science curriculum since the middle of the 20th century. The need for teaching chemistry within a historical context is not difficult to understand as HPS is not far below the surface in any science classroom. A review of the literature shows that the traditional chemistry classroom, curricula, and textbooks while dealing with concepts such as law, theory, model, explanation, hypothesis, observation, evidence and idealization, generally ignore elements of the history and philosophy of science. This book proposes that the conceptual understanding of chemistry requires knowledge and understanding of the history and philosophy of science. “Professor Niaz’s book is most welcome, coming at a time when there is an urgently felt need to upgrade the teaching of science. The book is a huge aid for adding to the usual way - presenting science as a series of mere facts - also the necessary mandate: to show how science is done, and how science, through its history and philosophy, is part of the cultural development of humanity.” Gerald Holton, Mallinckrodt Professor of Physics & Professor of History of Science, Harvard University “In this stimulating and sophisticated blend of history of chemistry, philosophy of science, and science pedagogy, Professor Mansoor Niaz has succeeded in offering a promising new approach to the teaching of fundamental ideas in chemistry. Historians and philosophers of chemistry --- and above all, chemistry teachers --- will find this book full of valuable and highly usable new ideas” Alan Rocke, Case Western Reserve University “This book artfully connects chemistry and chemistry education to the human context in which chemical science is practiced and the historical and philosophical background that illuminates that practice. Mansoor Niaz deftly weaves together historical episodes in the quest for scientific knowledge with the psychology of learning and philosophical reflections on the nature of scientific knowledge and method. The result is a compelling case for historically and philosophically informed science education. Highly recommended!” Harvey Siegel, University of Miami “Books that analyze the philosophy and history of science in Chemistry are quite rare. ‘Chemistry Education and Contributions from History and Philosophy of Science’ by Mansoor Niaz is one of the rare books on the history and philosophy of chemistry and their importance in teaching this science. The book goes through all the main concepts of chemistry, and analyzes the historical and philosophical developments as well as their reflections in textbooks. Closest to my heart is Chapter 6, which is devoted to the chemical bond, the glue that holds together all matter in our earth. The chapter emphasizes the revolutionary impact of the concept of the ‘covalent bond’ on the chemical community and the great novelty of the idea that was conceived 11 years before quantum mechanics was able to offer the mechanism of electron pairing and covalent bonding. The author goes then to describe the emergence of two rival theories that explained the nature of the chemical bond in terms of quantum mechanics; these are valence bond (VB) and molecular orbital (MO) theories. He emphasizes the importance of having rival theories and interpretations in science and its advancement. He further argues that this VB-MO rivalry is still alive and together the two conceptual frames serve as the tool kit for thinking and doing chemistry in creative manners. The author surveys chemistry textbooks in the light of the how the books preserve or not the balance between the two theories in describing various chemical phenomena. This Talmudic approach of conceptual tension is a universal characteristic of any branch of evolving wisdom. As such, Mansoor’s book would be of great utility for chemistry teachers to examine how can they become more effective teachers by recognizing the importance of conceptual tension”. Sason Shaik Saeree K. and Louis P. Fiedler Chair in Chemistry Director, The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, ISRAEL
A collection of essays discussing a wide range of sciences and the central philosophical issues associated with them, presenting the sciences collectively to encourage a greater understanding of their associative theoretical foundations, as well as their relationships to each other. Offers a new and unique approach to studying and comparing the philosophies of a variety of scientific disciplines Explores a wide variety of individual sciences, including mathematics, physics, chemistry, biology, psychology, sociology and economics The essays are written by leading scholars in a highly accessible style for the student audience Complements more traditional studies of philosophy of science
Introducing the reader to the very latest developments in the philosophical foundations of physics, this book covers advanced material at a level suitable for beginner and intermediate students. A detailed overview is provided of the central debates in the philosophy of quantum mechanics, statistical mechanics, quantum computation, and quantum gravity. This book enables both philosophers and physicists to engage with the most pressing problems in contemporary philosophy of physics in a fruitful way.
The aims of this book are: • to contribute to professional development of those directly involved in science education (science teachers, elementary and secondary science teacher advisors, researchers in science education, etc), • to contribute to the improvement of the quality of science education at all levels of education with the exploitation of elements from History of Science incorporated in science teaching –it is argued that through such approaches the students’ motivation can be raised, their romantic understanding can be developed and consequently their conceptual understanding of science concepts can be improved since these approaches make science more attractive to them– and • to contribute to the debate about science education at the international level in order to find new ways for further inquiry on the issues that the book is dealing with. The book is divided in two parts: The first expounds its philosophical and epistemological framework and the second combines theory and praxis, the theoretical insights with their practical applications.
Simon Palfrey offers a new way of understanding Shakespeare's playworlds, with piercingly original readings of language, scenes, and characters.
A vacuum, classically understood, contains nothing. The quantum vacuum, on the other hand, is a seething cauldron of nothingness: particle pairs going in and out of existence continuously and rapidly while exerting influence over an enormous range of scales. Acclaimed mathematical physicist and natural philosopher Luciano Boi expounds the quantum vacuum, exploring the meaning of nothingness and its relationship with physical reality. Boi first provides a deep analysis of the interaction between geometry and physics at the quantum level. He next describes the relationship between the microscopic and macroscopic structures of the world. In so doing, Boi sheds light on the very nature of the universe, stressing in an original and profound way the relationship between quantum geometry and the internal symmetries underlying the behavior of matter and the interactions of forces. Beyond the physics and mathematics of the quantum vacuum, Boi offers a profoundly philosophical interpretation of the concept. Plato and Aristotle did not believe a vacuum was possible. How could nothing be something, they asked? Boi traces the evolution of the quantum vacuum from an abstract concept in ancient Greece to its fundamental role in quantum field theory and string theory in modern times. The quantum vacuum is a complex entity, one essential to understanding some of the most intriguing issues in twentieth-century physics, including cosmic singularity, dark matter and energy, and the existence of the Higgs boson particle. Boi explains with simple clarity the relevant theories and fundamental concepts of the quantum vacuum. Theoretical, mathematical, and particle physicists, as well as researchers and students of the history and philosophy of physics, will find The Quantum Vacuum to be a stimulating and engaging primer on the topic.

Best Books