Download Free Quantum Stochastic Processes And Noncommutative Geometry Cambridge Tracts In Mathematics Book in PDF and EPUB Free Download. You can read online Quantum Stochastic Processes And Noncommutative Geometry Cambridge Tracts In Mathematics and write the review.

The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics.
This book offers the revised and completed notes of lectures given at the 2007 conference, "Quantum Potential Theory: Structures and Applications to Physics." These lectures provide an introduction to the theory and discuss various applications.
This volume is to pique the interest of many researchers in the fields of infinite dimensional analysis and quantum probability. These fields have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. These fields are rather wide and are of a strongly interdisciplinary nature. For such a purpose, we strove to bridge among these interdisciplinary fields in our Workshop on IDAQP and their Applications that was held at the Institute for Mathematical Sciences, National University of Singapore from 3–7 March 2014. Readers will find that this volume contains all the exciting contributions by well-known researchers in search of new directions in these fields. Contents: Extensions of Quantum Theory Canonically Associated to Classical Probability Measures (Luigi Accardi)Hida Distribution Construction of Indefinite Metric (ϕp)d (d ≥ 4) Quantum Field Theory (Sergio Albeverio and Minoru W Yoshida)A Mathematical Realization of von Neumann's Measurement Scheme (Masanari Asano, Masanori Ohya and Yuta Yamamori)On Random White Noise Processes with Memory for Time Series Analysis (Christopher C Bernido and M Victoria Carpio-Bernido)Self-Repelling (Fractional) Brownian Motion: Results and Open Questions (Jinky Bornales and Ludwig Streit)Normal Approximation for White Noise Functionals by Stein's Method and Hida Calculus (Louis H Y Chen, Yuh-Jia Lee and Hsin-Hung Shih)Sensitive Homology Searching Based on MTRAP Alignment (Toshihide Hara and Masanori Ohya)Some of the Future Directions of White Noise Theory (Takeyuki Hida)Local Statistics for Random Selfadjoint Operators (Peter D Hislop and Maddaly Krishna)Multiple Markov Properties of Gaussian Processes and Their Control (Win Win Htay)Quantum Stochastic Differential Equations Associated with Square of Annihilation and Creation Processes (Un Cig Ji and Kalyan B Sinha)Itô Formula for Generalized Real and Complex White Noise Functionals (Yuh-Jia Lee)Quasi Quantum Quadratic Operators of 𝕄2(ℂ) (Farrukh Mukhamedov)New Noise Depending on the Space Parameter and the Concept of Multiplicity (Si Si)A Hysteresis Effect on Optical Illusion and Non-Kolmogorovian Probability Theory (Masanari Asano, Andrei Khrennikov, Masanori Ohya and Yoshiharu Tanaka)Note on Entropy-Type Complexity of Communication Processes (Noboru Watanabe) Readership: Mathematicians, physicists, biologists, and information scientists as well as advanced undergraduates, and graduate students studying in these fields. All researchers interested in the study of Quantum Information and White Noise Theory. Keywords: White Noise Analysis;Quantum Information;Quantum Probability;Bioinformatics;Genes;Adaptive Dynamics;Entanglement;Quantum Entropy;Non-Kolmogorovian Probability;Infinite Dimensional AnalysisReview: Key Features: Mainly focused on quantum information theory and white noise analysis in line with the fields of infinite dimensional analysis and quantum probabilityWhite noise analysis is in a leading position of the analysis on modern stochastic analysis, and this volume contains contributions to the development of these new exciting directions
This volume contains current work at the frontiers of research in infinite dimensional stochastic analysis. It presents a carefully chosen collection of articles by experts to highlight the latest developments in white noise theory, infinite dimensional transforms, quantum probability, stochastic partial differential equations, and applications to mathematical finance. Included in this volume are expository papers which will help increase communication between researchers working in these areas. The tools and techniques presented here will be of great value to research mathematicians, graduate students and applied mathematicians.
Gérard G. Emch, b. 1936, mathematical physicist and quantum mechanic; contributed articles.
The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students.

Best Books

DMCA - Contact