Download Free Quantum Topology And Global Anomalies Advanced Series In Mathematical Physics Book in PDF and EPUB Free Download. You can read online Quantum Topology And Global Anomalies Advanced Series In Mathematical Physics and write the review.

Anomalies are ubiquitous features in quantum field theories. They can ruin the consistency of such theories and put significant restrictions on their viability, especially in dimensions higher than four. Global gauge and gravitational anomalies are to date, one of the scant powerful and probing tools available to physicists in the pursuit of uniqueness. This monograph is one of the very few that specializes in the study of global anomalies in quantum field theories. A discussion of various issues associated to three dimensional physics — the Chern–Simons–Witten theories — widen the scope of this book. Topics discussed here comprises: the ongoing quest for three-manifolds invariant, the role of the mapping class groups in (a) the detection and cancellation of global anomalies, (b) formulating three-manifolds invariant; the geometric quantization of Chern-Simons-Witten theories; deformation quantization; study of chiral and gravitational anomalies; anomalies and the Atiyah-Patodi-Singer Index theorem; exotic spheres; global gravitational anomalies in some six and ten dimensional supergravity and superstring theories, with an additional case study of Witten SU(2) Global Gauge Anomalies. In addition, five chapters lay out the mathematical basis for a thorough use of the topics above. One chapter focuses on the relationship between Teichmüller spaces, moduli spaces and mapping class groups. Another chapter is devoted to mapping class groups and arithmetic groups. Gauge theories on Riemann surfaces are studies in well over two chapters, the first one centered on the theory of bundles and the second on connections. Many readers will find this a useful book, especially theoretical physicists and mathematicians. The material presented here will be of interest to both the experts who will find complete, detailed and precise descriptions of important topics of current interest in mathematical physics, and to students and newcomers to the field, who will appreciate the vast amount of information provided here, especially on global anomalies. Contents:The Ongoing Quest for Three-Manifold InvariantsMapping Class Groups and 3-Manifold InvariantsTeichmüller Spaces and Mapping Class GroupsMapping Class Groups and Arithmetic GroupsWeil-Petersson Geometry of Teichmüller SpacesGauge Theories on Riemann Surfaces I: BundlesGauge Theories on Riemann Surfaces II: ConnectionsGeometric Quantization of Chern–Simons–Witten TheoriesDeformation QuantizationChiral and Gravitational AnomaliesAnomalies and the Index TheoremGlobal AnomaliesMapping Class Groups and Global AnomaliesExotic Spheres Readership: Mathematicians and physicists. keywords:
In this volume, topics are drawn from field theory, especially gauge field theory, as applied to particle, condensed matter and gravitational physics, and concern a variety of interesting subjects. These include geometricalDtopological effects in quantum theory, fractional charge, time travel, relativistic quantized fields in and out of thermal equilibrium and quantum modifications of symmetry in physical systems.Many readers will find this a useful volume, especially theoretical physicists and mathematicians. The material will be of interest to both the expert who will find well-presented novel and stimulating viewpoints of various subjects and the novice who will find complete, detailed and precise descriptions of important topics of current interest, in theoretical and mathematical physics.
Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.
An anomaly is the failure of classical symmetry to survive the process of quantization and regularization. The study of anomalies is the key to a deeper understanding of quantum field theory and has played an increasingly important role in the theory over the past 20 years. This text presents all the different aspects of the study of anomalies in an accessible and self-contained way. Much emphasis is now being placed on the formulation of the theory using the mathematical ideas of differential geometry and topology. This approach is followed here, and the derivations and calculations are given explicitly as an aid to students. Topics discussed include the relevant ideas from differential geometry and topology and the application of these paths (path integrals, differential forms, homotopy operators, etc.) to the study of anomalies. Chapters are devoted to abelian and nonabelian anomalies, consistent and covariant anomalies, and gravitational anomalies. The comprehensive overview of the theory presented in this book will be useful to both students and researchers.
Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.
The remarkable developments in differential topology and how these recent advances have been applied as a primary research tool in quantum field theory are presented here in a style reflecting the genuinely two-sided interaction between mathematical physics and applied mathematics. The author, following his previous work (Nash/Sen: Differential Topology for Physicists, Academic Press, 1983), covers elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory. The explanatory approach serves to illuminate and clarify these theories for graduate students and research workers entering the field for the first time. Treats differential geometry, differential topology, and quantum field theory Includes elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory Tackles problems of quantum field theory using differential topology as a tool

Best Books

DMCA - Contact