Download Free Set Thory Book Download Book in PDF and EPUB Free Download. You can read online Set Thory Book Download and write the review.

Since its inception, the theory of fuzzy sets has advanced in a variety of ways and in many disciplines. Applications of fuzzy technology can be found in artificial intelligence, computer science, control engineering, decision theory, expert systems, logic, management science, operations research, robotics, and others. Theoretical advances have been made in many directions. The primary goal of Fuzzy Set Theory - and its Applications, Fourth Edition is to provide a textbook for courses in fuzzy set theory, and a book that can be used as an introduction. To balance the character of a textbook with the dynamic nature of this research, many useful references have been added to develop a deeper understanding for the interested reader. Fuzzy Set Theory - and its Applications, Fourth Edition updates the research agenda with chapters on possibility theory, fuzzy logic and approximate reasoning, expert systems, fuzzy control, fuzzy data analysis, decision making and fuzzy set models in operations research. Chapters have been updated and extended exercises are included.
Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.
This monograph covers the recent major advances in various areas of set theory. From the reviews: "One of the classical textbooks and reference books in set theory....The present ‘Third Millennium’ edition...is a whole new book. In three parts the author offers us what in his view every young set theorist should learn and master....This well-written book promises to influence the next generation of set theorists, much as its predecessor has done." --MATHEMATICAL REVIEWS
This introduction to the theory of sets employs the discoveries of Cantor, Russell, Weierstrass, Zermelo, Bernstein, Dedekind, and others. It analyzes concepts and principles, offering numerous examples. Topics include the rudiments of set theory, arbitrary sets and their cardinal numbers, ordered sets and their order types, and well-ordered sets and their ordinal numbers. 1950 edition.
This undergraduate text develops its subject through observations of the physical world, covering finite sets, cardinal numbers, infinite cardinals, and ordinals. Includes exercises with answers. 1958 edition.
Set theory is a rich and beautiful subject whose fundamental concepts permeate virtually every branch of mathematics. One could say that set theory is a unifying theory for mathematics, since nearly all mathematical concepts and results can be formalized within set theory. This textbook is meant for an upper undergraduate course in set theory. In this text, the fundamentals of abstract sets, including relations, functions, the natural numbers, order, cardinality, transfinite recursion, the axiom of choice, ordinal numbers, and cardinal numbers, are developed within the framework of axiomatic set theory. The reader will need to be comfortable reading and writing mathematical proofs. The proofs in this textbook are rigorous, clear, and complete, while remaining accessible to undergraduates who are new to upper-level mathematics. Exercises are included at the end of each section in a chapter, with useful suggestions for the more challenging exercises.

Best Books