Download Free Subjective Logic A Formalism For Reasoning Under Uncertainty Artificial Intelligence Foundations Theory And Algorithms Book in PDF and EPUB Free Download. You can read online Subjective Logic A Formalism For Reasoning Under Uncertainty Artificial Intelligence Foundations Theory And Algorithms and write the review.

This is the first comprehensive treatment of subjective logic and all its operations. The author developed the approach, and in this book he first explains subjective opinions, opinion representation, and decision-making under vagueness and uncertainty, and he then offers a full definition of subjective logic, harmonising the key notations and formalisms, concluding with chapters on trust networks and subjective Bayesian networks, which when combined form general subjective networks. The author shows how real-world situations can be realistically modelled with regard to how situations are perceived, with conclusions that more correctly reflect the ignorance and uncertainties that result from partially uncertain input arguments. The book will help researchers and practitioners to advance, improve and apply subjective logic to build powerful artificial reasoning models and tools for solving real-world problems. A good grounding in discrete mathematics is a prerequisite.
Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
This book constitutes the refereed proceedings of the 9th International Conference on Ad Hoc Networks, AdHocNets 2017, held in Niagara Falls, Ontario, USA, in September 2017. The 19 full papers were selected from 30 submissions and cover a variety of network paradigms including mobile ad hoc networks (MANETs), sensor networks, vehicular networks, underwater networks, airborne networks, underground networks, personal area networks, device-to-device (D2D) communications in 5G cellular networks, and home networks. The papers present a wide range of applications in civilian, commercial, and military areas.
The representation of uncertainty is a central issue in Artificial Intelligence (AI) and is being addressed in many different ways. Each approach has its proponents, and each has had its detractors. However, there is now an in creasing move towards the belief that an eclectic approach is required to represent and reason under the many facets of uncertainty. We believe that the time is ripe for a wide ranging, yet accessible, survey of the main for malisms. In this book, we offer a broad perspective on uncertainty and approach es to managing uncertainty. Rather than provide a daunting mass of techni cal detail, we have focused on the foundations and intuitions behind the various schools. The aim has been to present in one volume an overview of the major issues and decisions to be made in representing uncertain knowl edge. We identify the central role of managing uncertainty to AI and Expert Systems, and provide a comprehensive introduction to the different aspects of uncertainty. We then describe the rationales, advantages and limitations of the major approaches that have been taken, using illustrative examples. The book ends with a review of the lessons learned and current research di rections in the field. The intended readership will include researchers and practitioners in volved in the design and implementation of Decision Support Systems, Ex pert Systems, other Knowledge-Based Systems and in Cognitive Science.
Learning and reasoning in large, structured, probabilistic worlds is at the heart of artificial intelligence. Markov decision processes have become the de facto standard in modeling and solving sequential decision making problems under uncertainty. Many efficient reinforcement learning and dynamic programming techniques exist that can solve such problems. Until recently, the representational state-of-the-art in this field was based on propositional representations.
Builds on classical probability theory and offers an extremely workable solution to the many problems of artificial intelligence, concentrating on the rapidly growing areas of fuzzy reasoning and neural computing. Contains a collection of previously unpublished articles by leading researchers in the field.
Soft computing is a new, emerging discipline rooted in a group of technologies that aim to exploit the tolerance for imprecision and uncertainty in achieving solutions to complex problems. The principal components of soft computing are fuzzy logic, neurocomputing, genetic algorithms and probabilistic reasoning. This volume is a collection of up-to-date articles giving a snapshot of the current state of the field. It covers the whole expanse, from theoretical foundations to applications. The contributors are among the world leaders in the field. Contents:Fuzzy Logic and Genetic AlgorithmsLearningFuzzy and Hybrid SystemsDecision and Aggregation TechniquesFuzzy Logic in DatabasesFoundations of Fuzzy LogicApplications of Fuzzy Sets Readership: Researchers and computer scientists. keywords:

Best Books

DMCA - Contact