Download Free Surveys In Geometry And Number Theory Reports On Contemporary Russian Mathematics London Mathematical Society Lecture Note Series Book in PDF and EPUB Free Download. You can read online Surveys In Geometry And Number Theory Reports On Contemporary Russian Mathematics London Mathematical Society Lecture Note Series and write the review.

A collection of survey articles by leading young researchers, showcasing the vitality of Russian mathematics.
This collection of articles from the Independent University of Moscow is derived from the Globus seminars held there. They are given by world authorities, from Russia and elsewhere, in various areas of mathematics and are designed to introduce graduate students to some of the most dynamic areas of mathematical research. The seminars aim to be informal, wide-ranging and forward-looking, getting across the ideas and concepts rather than formal proofs, and this carries over to the articles here. Topics covered range from computational complexity, algebraic geometry, dynamics, through to number theory and quantum groups. The volume as a whole is a fascinating and exciting overview of contemporary mathematics.
Ideas from quantum field theory and string theory have had an enormous impact on geometry over the last two decades. One extremely fruitful source of new mathematical ideas goes back to the works of Cecotti, Vafa, et al. around 1991 on the geometry of topological field theory. Their tt*-geometry (tt* stands for topological-antitopological) was motivated by physics, but it turned out to unify ideas from such separate branches of mathematics as singularity theory, Hodge theory, integrable systems, matrix models, and Hurwitz spaces. The interaction among these fields suggested by tt*-geometry has become a fast moving and exciting research area.This book, loosely based on the 2007 Augsburg, Germany workshop ""From tQFT to tt* and Integrability"", is the perfect introduction to the range of mathematical topics relevant to tt*-geometry. It begins with several surveys of the main features of tt*-geometry, Frobenius manifolds, twistors, and related structures in algebraic and differential geometry, each starting from basic definitions and leading to current research. The volume moves on to explorations of current foundational issues in Hodge theory: higher weight phenomena in twistor theory and non-commutative Hodge structures and their relation to mirror symmetry. The book concludes with a series of applications to integrable systems and enumerative geometry, exploring further extensions and connections to physics. With its progression through introductory, foundational, and exploratory material, this book is an indispensable companion for anyone working in the subject or wishing to enter it.
A collection of articles showcasing the achievements of young Russian researchers in combinatorial and algebraic geometry and topology.
This volume contains the proceedings of the conference String-Math 2015, which was held from December 31, 2015–January 4, 2016, at Tsinghua Sanya International Mathematics Forum in Sanya, China. Two of the main themes of this volume are frontier research on Calabi-Yau manifolds and mirror symmetry and the development of non-perturbative methods in supersymmetric gauge theories. The articles present state-of-the-art developments in these topics. String theory is a broad subject, which has profound connections with broad branches of modern mathematics. In the last decades, the prosperous interaction built upon the joint efforts from both mathematicians and physicists has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side, as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side.
Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers.

Best Books

DMCA - Contact