Download Free The Heston Model And Its Extensions In Matlab And C Wiley Finance Book in PDF and EPUB Free Download. You can read online The Heston Model And Its Extensions In Matlab And C Wiley Finance and write the review.

Tap into the power of the most popular stochastic volatility model for pricing equity derivatives Since its introduction in 1993, the Heston model has become a popular model for pricing equity derivatives, and the most popular stochastic volatility model in financial engineering. This vital resource provides a thorough derivation of the original model, and includes the most important extensions and refinements that have allowed the model to produce option prices that are more accurate and volatility surfaces that better reflect market conditions. The book's material is drawn from research papers and many of the models covered and the computer codes are unavailable from other sources. The book is light on theory and instead highlights the implementation of the models. All of the models found here have been coded in Matlab and C#. This reliable resource offers an understanding of how the original model was derived from Ricatti equations, and shows how to implement implied and local volatility, Fourier methods applied to the model, numerical integration schemes, parameter estimation, simulation schemes, American options, the Heston model with time-dependent parameters, finite difference methods for the Heston PDE, the Greeks, and the double Heston model. A groundbreaking book dedicated to the exploration of the Heston model—a popular model for pricing equity derivatives Includes a companion website, which explores the Heston model and its extensions all coded in Matlab and C# Written by Fabrice Douglas Rouah a quantitative analyst who specializes in financial modeling for derivatives for pricing and risk management Engaging and informative, this is the first book to deal exclusively with the Heston Model and includes code in Matlab and C# for pricing under the model, as well as code for parameter estimation, simulation, finite difference methods, American options, and more.
Practical options pricing for better-informed investment decisions. The Heston Model and Its Extensions in VBA is the definitive guide to options pricing using two of the derivatives industry's most powerful modeling tools—the Heston model, and VBA. Light on theory, this extremely useful reference focuses on implementation, and can help investors more efficiently—and accurately—exploit market information to better inform investment decisions. Coverage includes a description of the Heston model, with specific emphasis on equity options pricing and variance modeling, The book focuses not only on the original Heston model, but also on the many enhancements and refinements that have been applied to the model, including methods that use the Fourier transform, numerical integration schemes, simulation, methods for pricing American options, and much more. The companion website offers pricing code in VBA that resides in an extensive set of Excel spreadsheets. The Heston model is the derivatives industry's most popular stochastic volatility model for pricing equity derivatives. This book provides complete guidance toward the successful implementation of this valuable model using the industry's ubiquitous financial modeling software, giving users the understanding—and VBA code—they need to produce option prices that are more accurate, and volatility surfaces that more closely reflect market conditions. Derivatives pricing is often the hinge on which profit is made or lost in financial institutions, making accuracy of utmost importance. This book will help risk managers, traders, portfolio managers, quants, academics and other professionals better understand the Heston model and its extensions, in a writing style that is clear, concise, transparent and easy to understand. For better pricing accuracy, The Heston Model and Its Extensions in VBA is a crucial resource for producing more accurate model outputs such as prices, hedge ratios, volatilities, and graphs.
This book puts numerical methods in action for the purpose of solving practical problems in quantitative finance. The first part develops a toolkit in numerical methods for finance. The second part proposes twenty self-contained cases covering model simulation, asset pricing and hedging, risk management, statistical estimation and model calibration. Each case develops a detailed solution to a concrete problem arising in applied financial management and guides the user towards a computer implementation. The appendices contain "crash courses" in VBA and Matlab programming languages.
This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland
A through guide covering Modern Portfolio Theory as well as the recent developments surrounding it Modern portfolio theory (MPT), which originated with Harry Markowitz's seminal paper "Portfolio Selection" in 1952, has stood the test of time and continues to be the intellectual foundation for real-world portfolio management. This book presents a comprehensive picture of MPT in a manner that can be effectively used by financial practitioners and understood by students. Modern Portfolio Theory provides a summary of the important findings from all of the financial research done since MPT was created and presents all the MPT formulas and models using one consistent set of mathematical symbols. Opening with an informative introduction to the concepts of probability and utility theory, it quickly moves on to discuss Markowitz's seminal work on the topic with a thorough explanation of the underlying mathematics. Analyzes portfolios of all sizes and types, shows how the advanced findings and formulas are derived, and offers a concise and comprehensive review of MPT literature Addresses logical extensions to Markowitz's work, including the Capital Asset Pricing Model, Arbitrage Pricing Theory, portfolio ranking models, and performance attribution Considers stock market developments like decimalization, high frequency trading, and algorithmic trading, and reveals how they align with MPT Companion Website contains Excel spreadsheets that allow you to compute and graph Markowitz efficient frontiers with riskless and risky assets If you want to gain a complete understanding of modern portfolio theory this is the book you need to read.
A comprehensive introduction to various numerical methods used in computational finance today Quantitative skills are a prerequisite for anyone working in finance or beginning a career in the field, as well as risk managers. A thorough grounding in numerical methods is necessary, as is the ability to assess their quality, advantages, and limitations. This book offers a thorough introduction to each method, revealing the numerical traps that practitioners frequently fall into. Each method is referenced with practical, real-world examples in the areas of valuation, risk analysis, and calibration of specific financial instruments and models. It features a strong emphasis on robust schemes for the numerical treatment of problems within computational finance. Methods covered include PDE/PIDE using finite differences or finite elements, fast and stable solvers for sparse grid systems, stabilization and regularization techniques for inverse problems resulting from the calibration of financial models to market data, Monte Carlo and Quasi Monte Carlo techniques for simulating high dimensional systems, and local and global optimization tools to solve the minimization problem.

Best Books

DMCA - Contact