Download Free Topology Featured Titles For Topology Book in PDF and EPUB Free Download. You can read online Topology Featured Titles For Topology and write the review.

This introduction to topology provides separate, in-depth coverage of both general topology and algebraic topology. Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.
Learn the basics of point-set topology with the understanding of its real-world application to a variety of other subjects including science, economics, engineering, and other areas of mathematics. Introduces topology as an important and fascinating mathematics discipline to retain the readers interest in the subject. Is written in an accessible way for readers to understand the usefulness and importance of the application of topology to other fields. Introduces topology concepts combined with their real-world application to subjects such DNA, heart stimulation, population modeling, cosmology, and computer graphics. Covers topics including knot theory, degree theory, dynamical systems and chaos, graph theory, metric spaces, connectedness, and compactness. A useful reference for readers wanting an intuitive introduction to topology.
Aus den Rezensionen: "Was das Buch vor allem auszeichnet, ist die unkonventionelle Darstellungsweise. Hier wird Mathematik nicht im trockenen Definition-Satz-Beweis-Stil geboten, sondern sie wird dem Leser pointiert und mit viel Humor schmackhaft gemacht. In ungewöhnlich fesselnder Sprache geschrieben, ist die Lektüre dieses Buches auch ein belletristisches Vergnügen. Fast 200 sehr instruktive und schöne Zeichnungen unterstützen das Verständnis, motivieren die behandelten Aussagen, modellieren die tragenden Beweisideen heraus. Ungewöhnlich ist auch das Register, das unter jedem Stichwort eine Kurzdefinition enthält und somit umständliches Nachschlagen erspart". Wiss. Zeitschrift der TU Dresden Jetzt in der siebenten, durchgesehenen Auflage!
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.
Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.
This book provides a concise introduction to topology and is necessary for courses in differential geometry, functional analysis, algebraic topology, etc. Topology is a fundamental tool in most branches of pure mathematics and is also omnipresent in more applied parts of mathematics. Therefore students will need fundamental topological notions already at an early stage in their bachelor programs. While there are already many excellent monographs on general topology, most of them are too large for a first bachelor course. Topology fills this gap and can be either used for self-study or as the basis of a topology course.

Best Books

DMCA - Contact