Download Free Vehicular Engine Design Powertrain Book in PDF and EPUB Free Download. You can read online Vehicular Engine Design Powertrain and write the review.

This book provides an introduction to the design and mechanical development of reciprocating piston engines for vehicular applications. Beginning from the determination of required displacement and performance, coverage moves into engine configuration and architecture. Critical layout dimensions and design trade-offs are then presented for pistons, crankshafts, engine blocks, camshafts, valves, and manifolds. Coverage continues with material strength and casting process selection for the cylinder block and cylinder heads. Each major engine component and sub-system is then taken up in turn, from lubrication system, to cooling system, to intake and exhaust systems, to NVH. For this second edition latest findings and design practices are included, with the addition of over sixty new pictures and many new equations.
The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA’s Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience.
This book provides an introduction to the design and mechanical development of reciprocating piston engines for vehicular applications. Beginning from the determination of required displacement and performance, coverage moves into engine configuration and architecture. Critical layout dimensions and design trade-offs are then presented for pistons, crankshafts, engine blocks, camshafts, valves, and manifolds. Coverage continues with material strength and casting process selection for the cylinder block and cylinder heads. Each major engine component and sub-system is then taken up in turn, from lubrication system, to cooling system, to intake and exhaust systems, to NVH. For this second edition latest findings and design practices are included, with the addition of over sixty new pictures and many new equations.
A reference guide to modeling, analysis, and control of engines and drivelines for engineers and an introduction for students in the areas of modeling, analysis, and control of engines and drivelines; Covers the basic dynamics of internal combustion engines and drivelines; Discusses the goals that engine control design system aims for, and how these targets can be achieved; Provides a set of standard models and includes examples and case studies; Includes an overview of hybrid vehicles and powertrains. The aim of the book is to provide a set of standard models and serve as a reference material for engineers in the field. Highlights the interplay between the engine and driveline systems, and the integration between systems that is needed for successfully engineering a complete vehicle powertrain. In addition it also emphasises that systems should be designed such that they can be maintained and diagnosed over the vehicle life time, which is also an important engineering task in the development of control systems.--
Beginning at an introductory level and progressing to more advanced topics, this handbook provides all the information needed to properly design, model, analyze, specify, and manufacture cam-follower systems. It is accompanied by a 90-day trial demonstration copy of the professional version of Dynacam.
Thoroughly updated to encompass the significant technological advances since the publication of the first edition, Electric and Hybrid Vehicles: Design Fundamentals, Second Edition presents the design fundamentals, component sizing, and systems interactions of alternative vehicles. This new edition of a widely praised, bestselling textbook maintains the comprehensive, systems-level perspective of electric and hybrid vehicles while covering the hybrid architectures and components of the vehicle in much greater detail. The author emphasizes technical details, mathematical relationships, and design guidelines throughout the text. New to the Second Edition New chapters on sizing and design guidelines for various hybrid architectures, control strategies for hybrid vehicles, powertrain component cooling systems, and in-vehicle communication methods New sections on modeling of energy storage components, tire-road force mechanics, compressed air-storage, DC/DC converters, emission control systems, electromechanical brakes, and vehicle fuel economy Reorganization of power electronics, electric machines, and motor drives sections Enhanced sections on mechanical components that now include more technical descriptions and example problems An emphasis on the integration of mechanical and electrical components, taking into account the interdisciplinary nature of automotive engineering As an advisor to the University of Akron’s team in the Challenge X: Crossover to Sustainable Mobility, Dr. Husain knows first-hand how to teach students both the fundamentals and cutting-edge technologies of the next generation of automotives. This text shows students how electrical and mechanical engineers must work together to complete an alternative vehicle system. It empowers them to carry on state-of-the-art research and development in automotive engineering in order to meet today’s needs of clean, efficient, and sustainable vehicles.
The book deals with the increasingly complex test systems for powertrain components and systems giving an overview of the diverse types of test beds for all components of an advanced powertrain focusing on specific topics such as instrumentation, control, simulation, hardware-in-the-loop, automation or test facility management. This book is intended for powertrain (component) development engineers, test bed planners, test bed operators and beginners.
DMCA - Contact