Download Free An Introduction To Knot Theory Book in PDF and EPUB Free Download. You can read online An Introduction To Knot Theory and write the review.

A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.
Hailed by the Bulletin of the American Mathematical Society as "a very welcome addition to the mathematical literature," this text is appropriate for advanced undergraduates and graduate students. Written by two internationally renowned mathematicians, its accessible treatment requires no previous knowledge of algebraic topology. Starting with basic definitions of knots and knot types, the text proceeds to examinations of fundamental and free groups. A survey of the historic foundation for the notion of group presentation is followed by a careful proof of the theorem of Tietze and several examples of its use. Subsequent chapters explore the calculation of fundamental groups, the presentation of a knot group, the free calculus and the elementary ideals, and the knot polynomials and their characteristic properties. The text concludes with three helpful appendixes and a guide to the literature.
Knot theory is a kind of geometry, and one whose appeal is very direct because the objects studied are perceivable and tangible in everyday physical space. It is a meeting ground of such diverse branches of mathematics as group theory, matrix theory, number theory, algebraic geometry, and differential geometry, to name some of the more prominent ones. It had its origins in the mathematical theory of electricity and in primitive atomic physics, and there are hints today of new applications in certain branches of chemistryJ The outlines of the modern topological theory were worked out by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As a subfield of topology, knot theory forms the core of a wide range of problems dealing with the position of one manifold imbedded within another. This book, which is an elaboration of a series of lectures given by Fox at Haverford College while a Philips Visitor there in the spring of 1956, is an attempt to make the subject accessible to everyone. Primarily it is a text book for a course at the junior-senior level, but we believe that it can be used with profit also by graduate students. Because the algebra required is not the familiar commutative algebra, a disproportionate amount of the book is given over to necessary algebraic preliminaries.
This well-written and engaging volume, intended for undergraduates, introduces knot theory, an area of growing interest in contemporary mathematics. The hands-on approach features many exercises to be completed by readers. Prerequisites are only a basic familiarity with linear algebra and a willingness to explore the subject in a hands-on manner. The opening chapter offers activities that explore the world of knots and links — including games with knots — and invites the reader to generate their own questions in knot theory. Subsequent chapters guide the reader to discover the formal definition of a knot, families of knots and links, and various knot notations. Additional topics include combinatorial knot invariants, knot polynomials, unknotting operations, and virtual knots.
This book uses only linear algebra and basic group theory to study the properties of knots.
Knots are familiar objects. We use them to moor our boats, to wrap our packages, to tie our shoes. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. The Knot Book is an introduction to this rich theory, starting from our familiar understanding of knots and a bit of college algebra and finishing with exciting topics of current research. The Knot Book is also about the excitement of doing mathematics. Colin Adams engages the reader with fascinating examples, superb figures, and thought-provoking ideas. He also presents the remarkable applications of knot theory to modern chemistry, biology, and physics. This is a compelling book that will comfortably escort you into the marvelous world of knot theory. Whether you are a mathematics student, someone working in a related field, or an amateur mathematician, you will find much of interest in The Knot Book.
This invaluable book is an introduction to knot and link invariants as generalised amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes a extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas. The book is divided into two parts: Part I is a systematic course on knots and physics starting from the ground up, and Part II is a set of lectures on various topics related to Part I. Part II includes topics such as frictional properties of knots, relations with combinatorics, and knots in dynamical systems. In this third edition, a paper by the author entitled "Functional Integration and Vassiliev invariants" has been added. This paper shows how the Kontsevich integral approach to the Vassiliev invariants is directly related to the perturbative expansion of Witten's functional integral. While the book supplies the background, this paper can be read independently as an introduction to quantum field theory and knot invariants and their relation to quantum gravity. As in the second edition, there is a selection of papers by the author at the end of the book. Numerous clarifying remarks have been added to the text.
Colin Adams, well-known for his advanced research in topology and knot theory, is the author of this exciting new book that brings his findings and his passion for the subject to a more general audience. This beautifully illustrated comic book is appropriate for many mathematics courses at the undergraduate level such as liberal arts math, and topology. Additionally, the book could easily challenge high school students in math clubs or honors math courses and is perfect for the lay math enthusiast. Each copy of Why Knot? is packaged with a plastic manipulative called the Tangle R. Adams uses the Tangle because "you can open it up, tie it in a knot and then close it up again." The Tangle is the ultimate tool for knot theory because knots are defined in mathematics as being closed on a loop. Readers use the Tangle to complete the experiments throughout the brief volume. Adams also presents a illustrative and engaging history of knot theory from its early role in chemistry to modern applications such as DNA research, dynamical systems, and fluid mechanics. Real math, unreal fun!
Leading experts present a unique, invaluable introduction to the study of the geometry and typology of fluid flows. From basic motions on curves and surfaces to the recent developments in knots and links, the reader is gradually led to explore the fascinating world of geometric and topological fluid mechanics. Geodesics and chaotic orbits, magnetic knots and vortex links, continual flows and singularities become alive with more than 160 figures and examples. In the opening article, H. K. Moffatt sets the pace, proposing eight outstanding problems for the 21st century. The book goes on to provide concepts and techniques for tackling these and many other interesting open problems.
The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.
This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.
Since discovery of the Jones polynomial, knot theory has enjoyed a virtual explosion of important results and now plays a significant role in modern mathematics. In a unique presentation with contents not found in any other monograph, Knot Theory describes, with full proofs, the main concepts and the latest investigations in the field. The book is divided into six thematic sections. The first part discusses "pre-Vassiliev" knot theory, from knot arithmetics through the Jones polynomial and the famous Kauffman-Murasugi theorem. The second part explores braid theory, including braids in different spaces and simple word recognition algorithms. A section devoted to the Vassiliev knot invariants follows, wherein the author proves that Vassiliev invariants are stronger than all polynomial invariants and introduces Bar-Natan's theory on Lie algebra respresentations and knots. The fourth part describes a new way, proposed by the author, to encode knots by d-diagrams. This method allows the encoding of topological objects by words in a finite alphabet. Part Five delves into virtual knot theory and virtualizations of knot and link invariants. This section includes the author's own important results regarding new invariants of virtual knots. The book concludes with an introduction to knots in 3-manifolds and Legendrian knots and links, including Chekanov's differential graded algebra (DGA) construction. Knot Theory is notable not only for its expert presentation of knot theory's state of the art but also for its accessibility. It is valuable as a professional reference and will serve equally well as a text for a course on knot theory.
This is a foundation for arithmetic topology - a new branch of mathematics which is focused upon the analogy between knot theory and number theory. Starting with an informative introduction to its origins, namely Gauss, this text provides a background on knots, three manifolds and number fields. Common aspects of both knot theory and number theory, for instance knots in three manifolds versus primes in a number field, are compared throughout the book. These comparisons begin at an elementary level, slowly building up to advanced theories in later chapters. Definitions are carefully formulated and proofs are largely self-contained. When necessary, background information is provided and theory is accompanied with a number of useful examples and illustrations, making this a useful text for both undergraduates and graduates in the field of knot theory, number theory and geometry. ​
Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book"".
This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas. The book is divided into two parts: Part I is a systematic course on knots and physics starting from the ground up, and Part II is a set of lectures on various topics related to Part I. Part II includes topics such as frictional properties of knots, relations with combinatorics, and knots in dynamical systems. In this new edition, an article on Virtual Knot Theory and Khovanov Homology has beed added. Contents:Physical KnotsStates and the Bracket PolynomialThe Jones Polynomial and Its GeneralizationsBraids and the Jones PolynomialFormal Feynman Diagrams, Bracket as a Vacuum-Vacuum Expectation and the Quantum Group SL(2)qYang–Baxter Models for Specializations of the Homfly PolynomialKnot-Crystals — Classical Knot Theory in a Modern GuiseThe Kauffman PolynomialThree Manifold Invariants from the Jones PolynomialIntegral Heuristics and Witten's InvariantsThe Chromatic PolynomialThe Potts Model and the Dichromatic PolynomialThe Penrose Theory of Spin NetworksKnots and Strings — Knotted StringsDNA and Quantum Field TheoryKnots in Dynamical Systems — The Lorenz Attractorand selected papers Readership: Physicists and mathematicians. Keywords:Knots;Kauffman;Jones PolynomialReviews: "This book is an essential volume for the student of low-dimensional topology from which a serious student can learn most aspects of modern knot theory. Its informal tone encourages investigation on the part of the reader. The author leaves the reader items to puzzle out." Mathematical Reviews Reviews of the Third Edition: “It is an attractive book for physicists with profuse and often entertaining illustrations … proofs … seldom heavy and nearly always well explained with pictures … succeeds in infusing his own excitement and enthusiasm for these discoveries and their potential implications.” Physics Today “The exposition is clear and well illustrated with many examples. The book can be recommended to everyone interested in the connections between physics and topology of knots.” Mathematics Abstracts “… here is a gold mine where, with care and patience, one should get acquainted with a beautiful subject under the guidance of a most original and imaginative mind.” Mathematical Reviews
More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.

Best Books