Download Free Applied Time Series Analysis Statistics A Series Of Textbooks And Monographs Book in PDF and EPUB Free Download. You can read online Applied Time Series Analysis Statistics A Series Of Textbooks And Monographs and write the review.

Virtually any random process developing chronologically can be viewed as a time series. In economics, closing prices of stocks, the cost of money, the jobless rate, and retail sales are just a few examples of many. Developed from course notes and extensively classroom-tested, Applied Time Series Analysis includes examples across a variety of fields, develops theory, and provides software to address time series problems in a broad spectrum of fields. The authors organize the information in such a format that graduate students in applied science, statistics, and economics can satisfactorily navigate their way through the book while maintaining mathematical rigor. One of the unique features of Applied Time Series Analysis is the associated software, GW-WINKS, designed to help students easily generate realizations from models and explore the associated model and data characteristics. The text explores many important new methodologies that have developed in time series, such as ARCH and GARCH processes, time varying frequencies (TVF), wavelets, and more. Other programs (some written in R and some requiring S-plus) are available on an associated website for performing computations related to the material in the final four chapters.
This work examines theoretical issues, as well as practical developments in statistical inference related to econometric models and analysis. This work offers discussions on such areas as the function of statistics in aggregation, income inequality, poverty, health, spatial econometrics, panel and survey data, bootstrapping and time series.
With Bayesian statistics rapidly becoming accepted as a way to solve applied statisticalproblems, the need for a comprehensive, up-to-date source on the latest advances in thisfield has arisen.Presenting the basic theory of a large variety of linear models from a Bayesian viewpoint,Bayesian Analysis of Linear Models fills this need. Plus, this definitive volume containssomething traditional-a review of Bayesian techniques and methods of estimation, hypothesis,testing, and forecasting as applied to the standard populations ... somethinginnovative-a new approach to mixed models and models not generally studied by statisticianssuch as linear dynamic systems and changing parameter models ... and somethingpractical-clear graphs, eary-to-understand examples, end-of-chapter problems, numerousreferences, and a distribution appendix.Comprehensible, unique, and in-depth, Bayesian Analysis of Linear Models is the definitivemonograph for statisticians, econometricians, and engineers. In addition, this text isideal for students in graduate-level courses such as linear models, econometrics, andBayesian inference.
Over the last 15 years, singular spectrum analysis (SSA) has proven very successful. It has already become a standard tool in climatic and meteorological time series analysis and well known in nonlinear physics and signal processing. However, despite the promise it holds for time series applications in other disciplines, SSA is not widely known among statisticians and econometrists, and although the basic SSA algorithm looks simple, understanding what it does and where its pitfalls lay is by no means simple. Analysis of Time Series Structure: SSA and Related Techniques provides a careful, lucid description of its general theory and methodology. Part I introduces the basic concepts, and sets forth the main findings and results, then presents a detailed treatment of the methodology. After introducing the basic SSA algorithm, the authors explore forecasting and apply SSA ideas to change-point detection algorithms. Part II is devoted to the theory of SSA. Here the authors formulate and prove the statements of Part I. They address the singular value decomposition (SVD) of real matrices, time series of finite rank, and SVD of trajectory matrices. Based on the authors' original work and filled with applications illustrated with real data sets, this book offers an outstanding opportunity to obtain a working knowledge of why, when, and how SSA works. It builds a strong foundation for successfully using the technique in applications ranging from mathematics and nonlinear physics to economics, biology, oceanology, social science, engineering, financial econometrics, and market research.
In time series modeling, the behavior of a certain phenomenon is expressed in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part of the statistical modeling, it is very important and useful to learn fundamental methods of time series modeling. Illustrating how to build models for time series using basic methods, Introduction to Time Series Modeling covers numerous time series models and the various tools for handling them. The book employs the state-space model as a generic tool for time series modeling and presents convenient recursive filtering and smoothing methods, including the Kalman filter, the non-Gaussian filter, and the sequential Monte Carlo filter, for the state-space models. Taking a unified approach to model evaluation based on the entropy maximization principle advocated by Dr. Akaike, the author derives various methods of parameter estimation, such as the least squares method, the maximum likelihood method, recursive estimation for state-space models, and model selection by the Akaike information criterion (AIC). Along with simulation methods, he also covers standard stationary time series models, such as AR and ARMA models, as well as nonstationary time series models, including the locally stationary AR model, the trend model, the seasonal adjustment model, and the time-varying coefficient AR model. With a focus on the description, modeling, prediction, and signal extraction of times series, this book provides basic tools for analyzing time series that arise in real-world problems. It encourages readers to build models for their own real-life problems.
Book Description fields of social and economic sciences. The book presents a manual on the course General Theory of Statistics, including a series of not quite traditional topics. First of all, it concerns the mathematical bases of statistics and use of computer technologies in statistical probing. Thematic choice of the chapters and sections of the book is caused not only by interests and tastes of the authors, but also by modern tendencies in applied statistics and orientation of the given work. The book is based on a course of lectures given by the first author for undergraduates in social and economic sciences along with three books published in Russian and English in Estonia, Lithuania and Byelorussia. This book has been written for a large enough audience of teachers, researchers, statisticians, students, collegians and users of statistics in behavioral and social sciences. Above all, the book is directed to a wide circle of the readers studying statistical disciplines in high schools and colleges; however, it can be useful also to persons independently studying statistics.

Best Books