Download Free Causal Inference In Statistics A Primer Book in PDF and EPUB Free Download. You can read online Causal Inference In Statistics A Primer and write the review.

Many of the concepts and terminology surrounding modern causal inference can be quite intimidating to the novice. Judea Pearl presents a book ideal for beginners in statistics, providing a comprehensive introduction to the field of causality. Examples from classical statistics are presented throughout to demonstrate the need for causality in resolving decision-making dilemmas posed by data. Causal methods are also compared to traditional statistical methods, whilst questions are provided at the end of each section to aid student learning.
This state-of-the-art survey is dedicated to the memory of Emmanuil Markovich Braverman (1931-1977), a pioneer in developing machine learning theory. The 12 revised full papers and 4 short papers included in this volume were presented at the conference "Braverman Readings in Machine Learning: Key Ideas from Inception to Current State" held in Boston, MA, USA, in April 2017, commemorating the 40th anniversary of Emmanuil Braverman's decease. The papers present an overview of some of Braverman's ideas and approaches. The collection is divided in three parts. The first part bridges the past and the present and covers the concept of kernel function and its application to signal and image analysis as well as clustering. The second part presents a set of extensions of Braverman's work to issues of current interest both in theory and applications of machine learning. The third part includes short essays by a friend, a student, and a colleague.
The book provides an accessible but comprehensive overview of methods for mediation and interaction. There has been considerable and rapid methodological development on mediation and moderation/interaction analysis within the causal-inference literature over the last ten years. Much of this material appears in a variety of specialized journals, and some of the papers are quite technical. There has also been considerable interest in these developments from empirical researchers in the social and biomedical sciences. However, much of the material is not currently in a format that is accessible to them. The book closes these gaps by providing an accessible, comprehensive, book-length coverage of mediation. The book begins with a comprehensive introduction to mediation analysis, including chapters on concepts for mediation, regression-based methods, sensitivity analysis, time-to-event outcomes, methods for multiple mediators, methods for time-varying mediation and longitudinal data, and relations between mediation and other concepts involving intermediates such as surrogates, principal stratification, instrumental variables, and Mendelian randomization. The second part of the book concerns interaction or "moderation," including concepts for interaction, statistical interaction, confounding and interaction, mechanistic interaction, bias analysis for interaction, interaction in genetic studies, and power and sample-size calculation for interaction. The final part of the book provides comprehensive discussion about the relationships between mediation and interaction and unites these concepts within a single framework. This final part also provides an introduction to spillover effects or social interaction, concluding with a discussion of social-network analyses. The book is written to be accessible to anyone with a basic knowledge of statistics. Comprehensive appendices provide more technical details for the interested reader. Applied empirical examples from a variety of fields are given throughout. Software implementation in SAS, Stata, SPSS, and R is provided. The book should be accessible to students and researchers who have completed a first-year graduate sequence in quantitative methods in one of the social- or biomedical-sciences disciplines. The book will only presuppose familiarity with linear and logistic regression, and could potentially be used as an advanced undergraduate book as well.
Praise for the Second Edition “This book should be an essential part of the personallibrary of every practicingstatistician.”—Technometrics Thoroughly revised and updated, the new edition of NonparametricStatistical Methods includes additional modern topics andprocedures, more practical data sets, and new problems fromreal-life situations. The book continues to emphasize theimportance of nonparametric methods as a significant branch ofmodern statistics and equips readers with the conceptual andtechnical skills necessary to select and apply the appropriateprocedures for any given situation. Written by leading statisticians, Nonparametric StatisticalMethods, Third Edition provides readers with crucialnonparametric techniques in a variety of settings, emphasizing theassumptions underlying the methods. The book provides an extensivearray of examples that clearly illustrate how to use nonparametricapproaches for handling one- or two-sample location and dispersionproblems, dichotomous data, and one-way and two-way layoutproblems. In addition, the Third Edition features: The use of the freely available R software to aid incomputation and simulation, including many new R programs writtenexplicitly for this new edition New chapters that address density estimation, wavelets,smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science,astronomy, biology, criminology, education, engineering,environmental science, geology, home economics, medicine,oceanography, physics, psychology, sociology, and spacescience Nonparametric Statistical Methods, Third Edition is anexcellent reference for applied statisticians and practitioners whoseek a review of nonparametric methods and their relevantapplications. The book is also an ideal textbook forupper-undergraduate and first-year graduate courses in appliednonparametric statistics.
A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests. Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. Minitab® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets. With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.
Converting Data into Evidence: A Statistics Primer for the Medical Practitioner provides a thorough introduction to the key statistical techniques that medical practitioners encounter throughout their professional careers. These techniques play an important part in evidence-based medicine or EBM. Adherence to EBM requires medical practitioners to keep abreast of the results of medical research as reported in their general and specialty journals. At the heart of this research is the science of statistics. It is through statistical techniques that researchers are able to discern the patterns in the data that tell a clinical story worth reporting. The authors begin by discussing samples and populations, issues involved in causality and causal inference, and ways of describing data. They then proceed through the major inferential techniques of hypothesis testing and estimation, providing examples of univariate and bivariate tests. The coverage then moves to statistical modeling, including linear and logistic regression and survival analysis. In a final chapter, a user-friendly introduction to some newer, cutting-edge, regression techniques will be included, such as fixed-effects regression and growth-curve modeling. A unique feature of the work is the extensive presentation of statistical applications from recent medical literature. Over 30 different articles are explicated herein, taken from such journals. With the aid of this primer, the medical researcher will also find it easier to communicate with the statisticians on his or her research team. The book includes a glossary of statistical terms for easy access. This is an important reference work for the shelves of physicians, nurses, nurse practitioners, physician’s assistants, medical students, and residents.

Best Books