Download Free Chaos Based Cryptography Book in PDF and EPUB Free Download. You can read online Chaos Based Cryptography and write the review.

Chaos-based cryptography, attracting many researchers in the past decade, is a research field across two fields, i.e., chaos (nonlinear dynamic system) and cryptography (computer and data security). It Chaos' properties, such as randomness and ergodicity, have been proved to be suitable for designing the means for data protection. The book gives a thorough description of chaos-based cryptography, which consists of chaos basic theory, chaos properties suitable for cryptography, chaos-based cryptographic techniques, and various secure applications based on chaos. Additionally, it covers both the latest research results and some open issues or hot topics. The book creates a collection of high-quality chapters contributed by leading experts in the related fields. It embraces a wide variety of aspects of the related subject areas and provide a scientifically and scholarly sound treatment of state-of-the-art techniques to students, researchers, academics, personnel of law enforcement and IT practitioners who are interested or involved in the study, research, use, design and development of techniques related to chaos-based cryptography.
Discusses a desirable chaos-based encryption scheme for image storage and transmission is one that can resist different types of attacks in less time and with successful decryption. To resist different kinds of attacks, a higher security level is required. As a result, there is a need to enhance the security level of existing chaos-based image encryption schemes using hyper-chaos. To increase the level of security using hyper-chaos, the research will present a scheme that combines two different techniques that are used to improve the degree of security of chaos-based cryptography; a classical chaos-based cryptographic technique and a hyper-chaos masking technique. The first technique focuses on the efficient combination and transformation of image characteristics based on hyper-chaos pseudorandom numbers. The second technique focuses on driving the hyper-chaos system by using the results of the first technique to change the transmitted chaos dynamic as well as using synchronisation and a high-order differentiator for decryption. To achieve the objective of our research the following sub-problems are addressed.
Chaos is a fascinating phenomenon that has been observed in nature, laboratory, and has been applied in various real-world applications. Chaotic systems are deterministic with no random elements involved yet their behavior appears to be random. Obser- tions of chaotic behavior in nature include weather and climate, the dynamics of sat- lites in the solar system, the time evolution of the magnetic field of celestial bodies, population growth in ecology, to mention only a few examples. Chaos has been observed in the laboratory in a number of systems such as electrical circuits, lasers, chemical reactions, fluid dynamics, mechanical systems, and magneto-mechanical devices. Chaotic behavior has also found numerous applications in electrical and communication engineering, information and communication technologies, biology and medicine. To the best of our knowledge, this is the first book edited on chaos applications in intelligent computing. To access the latest research related to chaos applications in intelligent computing, we launched the book project where researchers from all over the world provide the necessary coverage of the mentioned field. The primary obj- tive of this project was to assemble as much research coverage as possible related to the field by defining the latest innovative technologies and providing the most c- prehensive list of research references.
With the prevalence of digital information, IT professionals have encountered new challenges regarding data security. In an effort to address these challenges and offer solutions for securing digital information, new research on cryptology methods is essential. Multidisciplinary Perspectives in Cryptology and Information Security considers an array of multidisciplinary applications and research developments in the field of cryptology and communication security. This publication offers a comprehensive, in-depth analysis of encryption solutions and will be of particular interest to IT professionals, cryptologists, and researchers in the field.
Over the past few decades, there has been numerous research studies conducted involving the synchronization of dynamical systems with several theoretical studies and laboratory experimentations demonstrating the pivotal role for this phenomenon in secure communications. Chaos Synchronization and Cryptography for Secure Communications: Applications for Encryption explores the combination of ordinary and time delayed systems and their applications in cryptographic encoding. This innovative publication presents a critical mass of the most sought after research, providing relevant theoretical frameworks and the latest empirical research findings in this area of study.
Annotation The four-volume set LNCS 4487-4490 constitutes the refereed proceedings of the 7th International Conference on Computational Science, ICCS 2007, held in Beijing, China in May 2007. More than 2400 submissions were made to the main conference and its 35 topical workshops. The 80 revised full papers and 11 revised short papers of the main track were carefully reviewed and selected from 360 submissions and are presented together with 624 accepted workshop papers in four volumes. According to the ICCS 2007 theme "Advancing Science and Society through Computation" the papers cover a large volume of topics in computational science and related areas, from multiscale physics, to wireless networks, and from graph theory to tools for program development. The papers are arranged in topical sections on efficient data management, parallel monte carlo algorithms, simulation of multiphysics multiscale systems, dynamic data driven application systems, computer graphics and geometric modeling, computer algebra systems, computational chemistry, computational approaches and techniques in bioinformatics, computational finance and business intelligence, geocomputation, high-level parallel programming, networks theory and applications, collective intelligence for semantic and knowledge grid, collaborative and cooperative environments, tools for program development and analysis in CS, intelligent agents in computing systems, CS in software engineering, computational linguistics in HCI, internet computing in science and engineering, workflow systems in e-science, graph theoretic algorithms and applications in cs, teaching CS, high performance data mining, mining text, semi-structured, Web, or multimedia data, computational methods in energy economics, risk analysis, advances in computational geomechanics and geophysics, meta-synthesis and complex systems, scientific computing in electronics engineering, wireless and mobile systems, high performance networked media and services, evolution toward next generation internet, real time systems and adaptive applications, evolutionary algorithms and evolvable systems.
This book provides a summary of the research conducted at UCLA, Stanford University, and UCSD over the last ?ve years in the area of nonlinear dyn- ics and chaos as applied to digital communications. At ?rst blush, the term “chaotic communications” seems like an oxymoron; how could something as precise and deterministic as digital communications be chaotic? But as this book will demonstrate, the application of chaos and nonlinear dynamicstocommunicationsprovidesmanypromisingnewdirectionsinareas of coding, nonlinear optical communications, and ultra-wideband commu- cations. The eleven chapters of the book summarize many of the promising new approaches that have been developed, and point the way to new research directions in this ?eld. Digital communications techniques have been continuously developed and re?ned for the past ?fty years to the point where today they form the heart of a multi-hundred billion dollar per year industry employing hundreds of thousands of people on a worldwide basis. There is a continuing need for transmission and reception of digital signals at higher and higher data rates. There are a variety of physical limits that place an upper limit on these data rates, and so the question naturally arises: are there alternative communi- tion techniques that can overcome some of these limitations? Most digital communications today is carried out using electronic devices that are essentially “linear,” and linear system theory has been used to c- tinually re?ne their performance. In many cases, inherently nonlinear devices are linearized in order to achieve a certain level of linear system performance.
Control Engineering and Information Systems contains the papers presented at the 2014 International Conference on Control Engineering and Information Systems (ICCEIS 2014, Yueyang, Hunan, China, 20-22 June 2014). All major aspects of the theory and applications of control engineering and information systems are addressed, including: – Intelligent systems – Teaching cases – Pattern recognition – Industry application – Machine learning – Systems science and systems engineering – Data mining – Optimization – Business process management – Evolution of public sector ICT – IS economics – IS security and privacy – Personal data markets – Wireless ad hoc and sensor networks – Database and system security – Application of spatial information system – Other related areas Control Engineering and Information Systems provides a valuable source of information for scholars, researchers and academics in control engineering and information systems.
This book discusses the mutual intersection of two fields of research: evolutionary computation, which can handle tasks such as control of various chaotic systems, and deterministic chaos, which is investigated as a behavioral part of evolutionary algorithms.
Many networked computer systems are far too vulnerable to cyber attacks that can inhibit their functioning, corrupt important data, or expose private information. Not surprisingly, the field of cyber-based systems is a fertile ground where many tasks can be formulated as learning problems and approached in terms of machine learning algorithms. This book contains original materials by leading researchers in the area and covers applications of different machine learning methods in the reliability, security, performance, and privacy issues of cyber space. It enables readers to discover what types of learning methods are at their disposal, summarizing the state-of-the-practice in this significant area, and giving a classification of existing work. Those working in the field of cyber-based systems, including industrial managers, researchers, engineers, and graduate and senior undergraduate students will find this an indispensable guide in creating systems resistant to and tolerant of cyber attacks.
A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.
Presenting encryption algorithms with diverse characteristics, Image Encryption: A Communication Perspective examines image encryption algorithms for the purpose of secure wireless communication. It considers two directions for image encryption: permutation-based approaches and substitution-based approaches. Covering the spectrum of image encryption principles and techniques, the book compares image encryption with permutation- and diffusion-based approaches. It explores number theory-based encryption algorithms such as the Data Encryption Standard, the Advanced Encryption Standard, and the RC6 algorithms. It not only details the strength of various encryption algorithms, but also describes their ability to work within the limitations of wireless communication systems. Since some ciphers were not designed for image encryption, the book explains how to modify these ciphers to work for image encryption. It also provides instruction on how to search for other approaches suitable for this task. To make this work comprehensive, the authors explore communication concepts concentrating on the orthogonal frequency division multiplexing (OFDM) system and present a simplified model for the OFDM communication system with its different implementations. Complete with simulation experiments and MATLAB® codes for most of the simulation experiments, this book will help you gain the understanding required to select the encryption method that best fulfills your application requirements.
The second international conference on INformation Systems Design and Intelligent Applications (INDIA – 2015) held in Kalyani, India during January 8-9, 2015. The book covers all aspects of information system design, computer science and technology, general sciences, and educational research. Upon a double blind review process, a number of high quality papers are selected and collected in the book, which is composed of two different volumes, and covers a variety of topics, including natural language processing, artificial intelligence, security and privacy, communications, wireless and sensor networks, microelectronics, circuit and systems, machine learning, soft computing, mobile computing and applications, cloud computing, software engineering, graphics and image processing, rural engineering, e-commerce, e-governance, business computing, molecular computing, nano-computing, chemical computing, intelligent computing for GIS and remote sensing, bio-informatics and bio-computing. These fields are not only limited to computer researchers but also include mathematics, chemistry, biology, bio-chemistry, engineering, statistics, and all others in which computer techniques may assist.
These proceedings from the 2013 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
This two-volume set (CCIS 201 and CCIS 202) constitutes the refereed proceedings of the International Conference on Computer Science and Education, CSE 2011, held in Qingdao, China, in July 2011. The 164 revised full papers presented in both volumes were carefully reviewed and selected from a large number of submissions. The papers address a large number of research topics and applications: from artificial intelligence to computers and information technology; from education systems to methods research and other related issues; such as: database technology, computer architecture, software engineering, computer graphics, control technology, systems engineering, network, communication, and other advanced technology, computer education, and life-long education.
This book constitutes the refereed proceedings of the 21st International Symposium on Computer and Information Sciences, ISCIS 2006, held in Istanbul, Turkey in October 2006. The 106 revised full papers presented together with five invited lectures were carefully reviewed and selected from 606 submissions.
Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.
These proceedings from the 2012 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
In the thirty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and numerous research workers and engineers throughout the world. Some of the advances in these fields have been recognized by awarding Nobel prizes to seven physicists in the last twenty years. The volumes in this series which have appeared up to now contain nearly 190 review articles by distinguished research workers, which have become permanent records for many important developments. They have helped optical scientists and optical engineers to stay abreast of their fields. There is no sign that developments in optics are slowing down or becoming less interesting. We confidently expect that, just like their predecessors, future volumes of Progress in Optics will faithfully record the most important advances that are being made in optics and related fields.

Best Books