Download Free Condensed Matter In A Nutshell Book in PDF and EPUB Free Download. You can read online Condensed Matter In A Nutshell and write the review.

An introduction to the area of condensed matter in a nutshell. This textbook covers the standard topics, including crystal structures, energy bands, phonons, optical properties, ferroelectricity, superconductivity, and magnetism.
The essential introduction to modern string theory—now fully expanded and revised String Theory in a Nutshell is the definitive introduction to modern string theory. Written by one of the world’s leading authorities on the subject, this concise and accessible book starts with basic definitions and guides readers from classic topics to the most exciting frontiers of research today. It covers perturbative string theory, the unity of string interactions, black holes and their microscopic entropy, the AdS/CFT correspondence and its applications, matrix model tools for string theory, and more. It also includes 600 exercises and serves as a self-contained guide to the literature. This fully updated edition features an entirely new chapter on flux compactifications in string theory, and the chapter on AdS/CFT has been substantially expanded by adding many applications to diverse topics. In addition, the discussion of conformal field theory has been extensively revised to make it more student-friendly. The essential one-volume reference for students and researchers in theoretical high-energy physics Now fully expanded and revised Provides expanded coverage of AdS/CFT and its applications, namely the holographic renormalization group, holographic theories for Yang-Mills and QCD, nonequilibrium thermal physics, finite density physics, and entanglement entropy Ideal for mathematicians and physicists specializing in theoretical cosmology, QCD, and novel approaches to condensed matter systems An online illustration package is available to professors
An esteemed researcher and acclaimed popular author takes up the challenge of providing a clear, relatively brief, and fully up-to-date introduction to one of the most vital but notoriously difficult subjects in theoretical physics. A quantum field theory text for the twenty-first century, this book makes the essential tool of modern theoretical physics available to any student who has completed a course on quantum mechanics and is eager to go on. Quantum field theory was invented to deal simultaneously with special relativity and quantum mechanics, the two greatest discoveries of early twentieth-century physics, but it has become increasingly important to many areas of physics. These days, physicists turn to quantum field theory to describe a multitude of phenomena. Stressing critical ideas and insights, Zee uses numerous examples to lead students to a true conceptual understanding of quantum field theory - what it means and what it can do. He covers an unusually diverse range of topics, including various contemporary developments, while guiding readers through thoughtfully designed problems. In contrast to previous texts, Zee incorporates gravity from the outset and discusses the innovative use of quantum field theory in modern condensed matter theory. Without a solid understanding of quantum field theory, no student can claim to have mastered contemporary theoretical physics. Offering a remarkably accessible conceptual introduction, this text will be widely welcomed and used.
The ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates This book provides an essential introduction to the physics of quantum many-body systems, which are at the heart of atomic and nuclear physics, condensed matter, and particle physics. Unlike other textbooks on the subject, it covers topics across a broad range of physical fields—phenomena as well as theoretical tools—and does so in a simple and accessible way. Edward Shuryak begins with Feynman diagrams of the quantum and statistical mechanics of a particle; in these applications, the diagrams are easy to calculate and there are no divergencies. He discusses the renormalization group and illustrates its uses, and covers systems such as weakly and strongly coupled Bose and Fermi gases, electron gas, nuclear matter, and quark-gluon plasmas. Phenomena include Bose condensation and superfluidity. Shuryak also looks at Cooper pairing and superconductivity for electrons in metals, liquid 3He, nuclear matter, and quark-gluon plasma. A recurring topic throughout is topological matter, ranging from ensembles of quantized vortices in superfluids and superconductors to ensembles of colored (QCD) monopoles and instantons in the QCD vacuum. Proven in the classroom, Quantum Many-Body Physics in a Nutshell is the ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates. Teaches students how quantum many-body systems work across many fields of physics Uses path integrals from the very beginning Features the easiest introduction to Feynman diagrams available Draws on the most recent findings, including trapped Fermi and Bose atomic gases Guides students from traditional systems, such as electron gas and nuclear matter, to more advanced ones, such as quark-gluon plasma and the QCD vacuum
A concise, modern textbook on group theory written especially for physicists Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)
This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons. Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems. Offers a complete treatment of classical electromagnetism Emphasizes physical ideas Separates the treatment of electromagnetism in vacuum and material media Presents key formulas in both SI and Gaussian units Covers applications to other areas of physics Includes more than 300 problems

Best Books