Download Free Getting Started With Tensorflow Book in PDF and EPUB Free Download. You can read online Getting Started With Tensorflow and write the review.

Get up and running with the latest numerical computing library by Google and dive deeper into your data! About This Book Get the first book on the market that shows you the key aspects TensorFlow, how it works, and how to use it for the second generation of machine learning Want to perform faster and more accurate computations in the field of data science? This book will acquaint you with an all-new refreshing library—TensorFlow! Dive into the next generation of numerical computing and get the most out of your data with this quick guide Who This Book Is For This book is dedicated to all the machine learning and deep learning enthusiasts, data scientists, researchers, and even students who want to perform more accurate, fast machine learning operations with TensorFlow. Those with basic knowledge of programming (Python and C/C++) and math concepts who want to be introduced to the topics of machine learning will find this book useful. What You Will Learn Install and adopt TensorFlow in your Python environment to solve mathematical problems Get to know the basic machine and deep learning concepts Train and test neural networks to fit your data model Make predictions using regression algorithms Analyze your data with a clustering procedure Develop algorithms for clustering and data classification Use GPU computing to analyze big data In Detail Google's TensorFlow engine, after much fanfare, has evolved in to a robust, user-friendly, and customizable, application-grade software library of machine learning (ML) code for numerical computation and neural networks. This book takes you through the practical software implementation of various machine learning techniques with TensorFlow. In the first few chapters, you'll gain familiarity with the framework and perform the mathematical operations required for data analysis. As you progress further, you'll learn to implement various machine learning techniques such as classification, clustering, neural networks, and deep learning through practical examples. By the end of this book, you'll have gained hands-on experience of using TensorFlow and building classification, image recognition systems, language processing, and information retrieving systems for your application. Style and approach Get quickly up and running with TensorFlow using this fast-paced guide. You will get to know everything that can be done with TensorFlow and we'll show you how to implement it in your environment. The examples in the book are from the core of the computation industry—something you can connect to and will find familiar.
This book is designed to help anyone who wants to learn Coral Dev Board. Various programs are provided. The following is highlight topics in this book.

* Preparing Coral Dev Board Environment * Setting Up and Running * Connecting to a Network * Coral Dev Board Programming * Accessing GPIO * Working with Tensorflow Lite on Edge TPU * Working with Bluetooth * MDT Shell for Coral Dev

This book is an exploration of deep learning in Python using TensorFlow. The author guides you on how to create machine learning models using TensorFlow. You will know the initial steps of getting started with TensorFlow in Python. This involves installing TensorFlow and writing your first code. TensorFlow works using the concept of graphs. The author helps you know how expressions are represented into graphs in TensorFlow. Deep learning in Python with TensorFlow simply involves the creation of neural network models. The author helps you understand how to create neural network models with TensorFlow. You are guided on how to train such models with data of various types. Examples of such data include images and text. The process of loading your own data into TensorFlow for training neural network models has also been discussed. You will also know how to use the inbuilt data for training your neural network models. You will learn from this book: Getting started Building a Neural Network Working with Images Importing Data Subjects include: tensorflow python, deep learning with python, tensorflow machine learning, tensor flow, tensorflow deep learning cookbook, tensorflow for deep learning, tensorflow for dummies, tensorflow books, machine learning with tensorflow, tensorflow c++, concept of graphs, neural network, neural networks python, tensorflow with neural network.
Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of this comprehensive TensorFlow guide About This Book Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide Real-world contextualization through some deep learning problems concerning research and application Who This Book Is For The book is intended for a general audience of people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus. What You Will Learn Learn about machine learning landscapes along with the historical development and progress of deep learning Learn about deep machine intelligence and GPU computing with the latest TensorFlow 1.x Access public datasets and utilize them using TensorFlow to load, process, and transform data Use TensorFlow on real-world datasets, including images, text, and more Learn how to evaluate the performance of your deep learning models Using deep learning for scalable object detection and mobile computing Train machines quickly to learn from data by exploring reinforcement learning techniques Explore active areas of deep learning research and applications In Detail Deep learning is the step that comes after machine learning, and has more advanced implementations. Machine learning is not just for academics anymore, but is becoming a mainstream practice through wide adoption, and deep learning has taken the front seat. As a data scientist, if you want to explore data abstraction layers, this book will be your guide. This book shows how this can be exploited in the real world with complex raw data using TensorFlow 1.x. Throughout the book, you'll learn how to implement deep learning algorithms for machine learning systems and integrate them into your product offerings, including search, image recognition, and language processing. Additionally, you'll learn how to analyze and improve the performance of deep learning models. This can be done by comparing algorithms against benchmarks, along with machine intelligence, to learn from the information and determine ideal behaviors within a specific context. After finishing the book, you will be familiar with machine learning techniques, in particular the use of TensorFlow for deep learning, and will be ready to apply your knowledge to research or commercial projects. Style and approach This step-by-step guide will explore common, and not so common, deep neural networks and show how these can be exploited in the real world with complex raw data. With the help of practical examples, you will learn how to implement different types of neural nets to build smart applications related to text, speech, and image data processing.
The purpose of this book is to help to spread TensorFlow knowledge among engineers who want to expand their wisdom in the exciting world of Machine Learning. We believe that anyone with an engineering background might require from now on Deep Learning, an
Tackle common commercial machine learning problems with Google's TensorFlow 1.x library and build deployable solutions. About This Book Enter the new era of second-generation machine learning with Python with this practical and insightful guide Set up TensorFlow 1.x for actual industrial use, including high-performance setup aspects such as multi-GPU support Create pipelines for training and using applying classifiers using raw real-world data Who This Book Is For This book is for data scientists and researchers who are looking to either migrate from an existing machine learning library or jump into a machine learning platform headfirst. The book is also for software developers who wish to learn deep learning by example. Particular focus is placed on solving commercial deep learning problems from several industries using TensorFlow's unique features. No commercial domain knowledge is required, but familiarity with Python and matrix math is expected. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build deep neural networks using TensorFlow 1.x Cover key tasks such as clustering, sentiment analysis, and regression analysis using TensorFlow 1.x Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Learn how to use multiple GPUs for faster training using AWS In Detail Google's TensorFlow is a game changer in the world of machine learning. It has made machine learning faster, simpler, and more accessible than ever before. This book will teach you how to easily get started with machine learning using the power of Python and TensorFlow 1.x. Firstly, you'll cover the basic installation procedure and explore the capabilities of TensorFlow 1.x. This is followed by training and running the first classifier, and coverage of the unique features of the library including data flow graphs, training, and the visualization of performance with TensorBoard—all within an example-rich context using problems from multiple industries. You'll be able to further explore text and image analysis, and be introduced to CNN models and their setup in TensorFlow 1.x. Next, you'll implement a complete real-life production system from training to serving a deep learning model. As you advance you'll learn about Amazon Web Services (AWS) and create a deep neural network to solve a video action recognition problem. Lastly, you'll convert the Caffe model to TensorFlow and be introduced to the high-level TensorFlow library, TensorFlow-Slim. By the end of this book, you will be geared up to take on any challenges of implementing TensorFlow 1.x in your machine learning environment. Style and approach This comprehensive guide will enable you to understand the latest advances in machine learning and will empower you to implement this knowledge in your machine learning environment.

Best Books