### Download Free Introduction To Engineering Electromagnetic Fields Book in PDF and EPUB Free Download. You can read online Introduction To Engineering Electromagnetic Fields and write the review.

This is a textbook designed to provide analytical background material in the area of Engineering Electromagnetic Fields for the senior level undergraduate and preparatory level graduate electrical engineering students. It is also an excellent reference book for researchers in the field of computational electromagnetic fields. The textbook covers ? Static Electric and Magnetic Fields: The basic laws governing the Electrostatics, Magnetostatics with engineering examples are presented which are enough to understand the fields and the electric current and charge sources. Dynamic Electromagnetic Fields: The Maxwell's equations in Time-Domain and solutions, the Maxwell's equations in Frequency-Domain and solutions. Extensive approaches are presented to solve partial differential equations satisfying electromagnetic boundary value problems. Foundation to electromagnetic field radiation, guided wave propagation is discussed to expose at the undergraduate level application of the Maxwell's equations to practical engineering problems.
This introductory text provides coverage of both static and dynamic fields. There are references to computer visualisation (Mathcad) and computation throughout the text, and there are Mathcad electronic books available free on the Internet to help students visualise electromagnetic fields. Important equations are highlighted in the text, and there are examples and problems throughout, with answers to the problems at the back of the book.
Presents the introductory theory and applications of Maxwell's equations to electromagnetic field problems. Unlike other texts, Maxwell's equations and the associated vector mathematics are developed early in the work, allowing readers to apply them at the outset. Its unified treatment of coordinate systems saves time in developing the rules for vector manipulations in ways other than the rectangular coordinate system. The following chapters cover static and quasi-static electric and magnetic fields, wave reflection and transmission at plane boundaries, the Poynting power theorem, rectangular waveguide mode theory, transmission lines, and an introduction to the properties of linear antennas and aperture antennas. Includes an expanded set of problems, many of which extend the material developed in the chapters.
This text provides students with the missing link that can help them master the basic principles of electromagnetics. The concept of vector fields is introduced by starting with clear definitions of position, distance, and base vectors. The symmetries of typical configurations are discussed in detail, including cylindrical, spherical, translational, and two-fold rotational symmetries. To avoid serious confusion between symbols with two indices, the text adopts a new notation: a letter with subscript 1-2 for the work done in moving a unit charge from point 2 to point 1, in which the subscript 1-2 mimics the difference in potentials, while the hyphen implies a sense of backward direction, from 2 to 1. This text includes 300 figures in which real data are drawn to scale. Many figures provide a three-dimensional view. Each subsection includes a number of examples that are solved by examining rigorous approaches in steps. Each subsection ends with straightforward exercises and answers through which students can check if they correctly understood the concepts. A total 350 examples and exercises are provided. At the end of each section, review questions are inserted to point out key concepts and relations discussed in the section. They are given with hints referring to the related equations and figures. The book contains a total of 280 end-of-chapter problems.
Based on circuit theory rather than on the classical force-relationship approach, this text uses the theory of electric circuits to provide a system of experiments. 1958 edition.
This introduction to electromagnetic fields emphasizes the computation of fields and the development of theoretical relations. It presents the electromagnetic field and Maxwell's equations with a view toward connecting the disparate applications to the underlying relations, along with computational methods of solving the equations.