Download Free Learning Jupyter Book in PDF and EPUB Free Download. You can read online Learning Jupyter and write the review.

Learn how to write code, mathematics, graphics, and output, all in a single document, as well as in a web browser using Project Jupyter About This Book Learn to write, execute, and comment your live code and formulae all under one roof using this unique guide This one-stop solution on Project Jupyter will teach you everything you need to know to perform scientific computation with ease This easy-to-follow, highly practical guide lets you forget your worries in scientific application development by leveraging big data tools such as Apache Spark, Python, R etc Who This Book Is For This book caters to all developers, students, or educators who want to execute code, see output, and comment all in the same document, in the browser. Data science professionals will also find this book very useful to perform technical and scientific computing in a graphical, agile manner. What You Will Learn Install and run the Jupyter Notebook system on your machine Implement programming languages such as R, Python, Julia, and JavaScript with Jupyter Notebook Use interactive widgets to manipulate and visualize data in real time Start sharing your Notebook with colleagues Invite your colleagues to work with you in the same Notebook Organize your Notebook using Jupyter namespaces Access big data in Jupyter In Detail Jupyter Notebook is a web-based environment that enables interactive computing in notebook documents. It allows you to create and share documents that contain live code, equations, visualizations, and explanatory text. The Jupyter Notebook system is extensively used in domains such as data cleaning and transformation, numerical simulation, statistical modeling, machine learning, and much more. This book starts with a detailed overview of the Jupyter Notebook system and its installation in different environments. Next we'll help you will learn to integrate Jupyter system with different programming languages such as R, Python, JavaScript, and Julia and explore the various versions and packages that are compatible with the Notebook system. Moving ahead, you master interactive widgets, namespaces, and working with Jupyter in a multiuser mode. Towards the end, you will use Jupyter with a big data set and will apply all the functionalities learned throughout the book. Style and approach This comprehensive practical guide will teach you how to work with the Jupyter Notebook system. It demonstrates the integration of various programming languages with Jupyter Notebook through hands-on examples in every chapter.
Create and share livecode, equations, visualizations, and explanatory text, in both a single document and a web browser with Jupyter Key Features Learn how to use Jupyter 5.x features such as cell tagging and attractive table styles Leverage big data tools and datasets with different Python packages Explore multiple-user Jupyter Notebook servers Book Description The Jupyter Notebook allows you to create and share documents that contain live code, equations, visualizations, and explanatory text. The Jupyter Notebook system is extensively used in domains such as data cleaning and transformation, numerical simulation, statistical modeling, and machine learning. Learning Jupyter 5 will help you get to grips with interactive computing using real-world examples. The book starts with a detailed overview of the Jupyter Notebook system and its installation in different environments. Next, you will learn to integrate the Jupyter system with different programming languages such as R, Python, Java, JavaScript, and Julia, and explore various versions and packages that are compatible with the Notebook system. Moving ahead, you will master interactive widgets and namespaces and work with Jupyter in a multi-user mode. By the end of this book, you will have used Jupyter with a big dataset and be able to apply all the functionalities you’ve explored throughout the book. You will also have learned all about the Jupyter Notebook and be able to start performing data transformation, numerical simulation, and data visualization. What you will learn Install and run the Jupyter Notebook system on your machine Implement programming languages such as R, Python, Julia, and JavaScript with the Jupyter Notebook Use interactive widgets to manipulate and visualize data in real time Start sharing your Notebook with colleagues Invite your colleagues to work with you on the same Notebook Organize your Notebook using Jupyter namespaces Access big data in Jupyter for dealing with large datasets using Spark Who this book is for Learning Jupyter 5 is for developers, data scientists, machine learning users, and anyone working on data analysis or data science projects across different teams. Data science professionals will also find this book useful for performing technical and scientific computing collaboratively.
Create and share livecode, equations, visualizations, and explanatory text, in both a single document and a web browser with Jupyter Key Features Learn how to use Jupyter 5.x features such as cell tagging and attractive table styles Leverage big data tools and datasets with different Python packages Explore multiple-user Jupyter Notebook servers Book Description The Jupyter Notebook allows you to create and share documents that contain live code, equations, visualizations, and explanatory text. The Jupyter Notebook system is extensively used in domains such as data cleaning and transformation, numerical simulation, statistical modeling, and machine learning. Learning Jupyter 5 will help you get to grips with interactive computing using real-world examples. The book starts with a detailed overview of the Jupyter Notebook system and its installation in different environments. Next, you will learn to integrate the Jupyter system with different programming languages such as R, Python, Java, JavaScript, and Julia, and explore various versions and packages that are compatible with the Notebook system. Moving ahead, you will master interactive widgets and namespaces and work with Jupyter in a multi-user mode. By the end of this book, you will have used Jupyter with a big dataset and be able to apply all the functionalities you've explored throughout the book. You will also have learned all about the Jupyter Notebook and be able to start performing data transformation, numerical simulation, and data visualization. What you will learn Install and run the Jupyter Notebook system on your machine Implement programming languages such as R, Python, Julia, and JavaScript with the Jupyter Notebook Use interactive widgets to manipulate and visualize data in real time Start sharing your Notebook with colleagues Invite your colleagues to work with you on the same Notebook Organize your Notebook using Jupyter namespaces Access big data in Jupyter for dealing with large datasets using Spark Who this book is for Learning Jupyter 5 is for developers, data scientists, machine learning users, and anyone working on data analysis or data science projects across different teams. Data science professionals will also find this book useful for performing technical and scientific computing collaboratively. Downloading the example code for this book You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If ...
Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook.
Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level.
8+ Hours of Video Instruction Learn just the essentials of Python-based Machine Learning on AWS and Google Cloud Platform with Jupyter Notebook. Description This 8-hour LiveLesson video course shows how AWS and Google Cloud Platform can be used to solve real-world business problems in Machine Learning and AI. Noah Gift covers how to get started with Python via Jupyter Notebook, and then proceeds to dive into nuts and bolts of Data Science libraries in Python, including Pandas, Seaborn, scikit-learn, and TensorFlow. EDA, or exploratory data analysis, is at the heart of the Machine Learning; therefore, this series also highlights how to perform EDA in Python and Jupyter Notebook. Software engineering fundamentals tie the series together, with key instruction on linting, testing, command-line tools, data engineering APIs, and more. The supporting code for this LiveLesson is located at http://www.informit.com/store/essential-machine-learning-and-ai-with-python-and-jupyter-9780135261095 . About the Instructor Noah Gift is lecturer and consultant at UC Davis Graduate School of Management in the MSBA program. He is teaching graduate machine learning and consulting on Machine Learning and Cloud Architecture for students and faculty. He has published close to 100 technical publications, including two books on subjects ranging from Cloud Machine Learning to DevOps. He is also a certified AWS Solutions Architect and an SME (Subject Matter Expert for Machine Learning for AWS). He has an MBA from UC Davis, an MS in Computer Information Systems from Cal State Los Angeles, and a BS in Nutritional Science from Cal Poly San Luis Obispo. Professionally, Noah has approximately 20 years of experience of programming in Python and is a member of the Python Software Foundation. He has worked in roles ranging from CTO, General Manager, Consulting CTO and Cloud Architect. This experience has been with a wide variety of companies including ABC, Caltech, Sony Imageworks, Disney Feature Animation, Weta Digital, AT&T, Turner Studios, and Linden Lab. In the past ten years, he has been responsible for shipping many new products at multiple companies that generated millions of dollars of revenue and had global scale. He is the founder of Pragmatic AI Labs, a training, consulting, and AI/ML product company that specializes in cloud native Machine Learning and AI Solutions. Skill Level Beginner What You Will Learn Introduces Data Science concepts and Python funda...
Your one-stop guide to building an efficient data science pipeline using Jupyter About This Book Get the most out of your Jupyter notebook to complete the trickiest of tasks in Data Science Learn all the tasks in the data science pipeline—from data acquisition to visualization—and implement them using Jupyter Get ahead of the curve by mastering all the applications of Jupyter for data science with this unique and intuitive guide Who This Book Is For This book targets students and professionals who wish to master the use of Jupyter to perform a variety of data science tasks. Some programming experience with R or Python, and some basic understanding of Jupyter, is all you need to get started with this book. What You Will Learn Understand why Jupyter notebooks are a perfect fit for your data science tasks Perform scientific computing and data analysis tasks with Jupyter Interpret and explore different kinds of data visually with charts, histograms, and more Extend SQL's capabilities with Jupyter notebooks Combine the power of R and Python 3 with Jupyter to create dynamic notebooks Create interactive dashboards and dynamic presentations Master the best coding practices and deploy your Jupyter notebooks efficiently In Detail Jupyter Notebook is a web-based environment that enables interactive computing in notebook documents. It allows you to create documents that contain live code, equations, and visualizations. This book is a comprehensive guide to getting started with data science using the popular Jupyter notebook. If you are familiar with Jupyter notebook and want to learn how to use its capabilities to perform various data science tasks, this is the book for you! From data exploration to visualization, this book will take you through every step of the way in implementing an effective data science pipeline using Jupyter. You will also see how you can utilize Jupyter's features to share your documents and codes with your colleagues. The book also explains how Python 3, R, and Julia can be integrated with Jupyter for various data science tasks. By the end of this book, you will comfortably leverage the power of Jupyter to perform various tasks in data science successfully. Style and approach This book is a perfect blend of concepts and practical examples, written in a way that is very easy to understand and implement. It follows a logical flow where you will be able to build on your understanding of the different Jupyter features with every chapter.

Best Books