Download Free Online Pdf Data Science From Scratch Free Book in PDF and EPUB Free Download. You can read online Online Pdf Data Science From Scratch Free and write the review.

Data science is the most exciting skill you can master. Data has dramatically changed how our world works. From entertainment to politics, from technology to advertising and from science to the business world, data is integral and its only limit is our imagination. If you want to have a vibrant and valuable professional life, being skilled with data is the key to a cutting-edge career. Learning how to work with data may seem intimidating or difficult but with Confident Data Skills you will be able to master the fundamentals and supercharge your professional abilities. This essential book covers data mining, preparing data, analysing data, communicating data, financial modelling, visualizing insights and presenting data through film making and dynamic simulations. In-depth international case studies from a wide range of organizations, including Netflix, LinkedIn, Goodreads, Deep Blue, Alpha Go and Mike's Hard Lemonade Co. show successful data techniques in practice and inspire you to turn knowledge into innovation. Confident Data Skills also provides insightful guidance on how you can use data skills to enhance your employability and improve how your industry or company works through your data skills. Expert author and instructor, Kirill Eremenko, is committed to making the complex simple and inspiring you to have the confidence to develop an understanding, adeptness and love of data.
Grasp machine learning concepts, techniques, and algorithms with the help of real-world examples using Python libraries such as TensorFlow and scikit-learn Key Features Exploit the power of Python to explore the world of data mining and data analytics Discover machine learning algorithms to solve complex challenges faced by data scientists today Use Python libraries such as TensorFlow and Keras to create smart cognitive actions for your projects Book Description The surge in interest in machine learning (ML) is due to the fact that it revolutionizes automation by learning patterns in data and using them to make predictions and decisions. If you’re interested in ML, this book will serve as your entry point to ML. Python Machine Learning By Example begins with an introduction to important ML concepts and implementations using Python libraries. Each chapter of the book walks you through an industry adopted application. You’ll implement ML techniques in areas such as exploratory data analysis, feature engineering, and natural language processing (NLP) in a clear and easy-to-follow way. With the help of this extended and updated edition, you’ll understand how to tackle data-driven problems and implement your solutions with the powerful yet simple Python language and popular Python packages and tools such as TensorFlow, scikit-learn, gensim, and Keras. To aid your understanding of popular ML algorithms, the book covers interesting and easy-to-follow examples such as news topic modeling and classification, spam email detection, stock price forecasting, and more. By the end of the book, you’ll have put together a broad picture of the ML ecosystem and will be well-versed with the best practices of applying ML techniques to make the most out of new opportunities. What you will learn Understand the important concepts in machine learning and data science Use Python to explore the world of data mining and analytics Scale up model training using varied data complexities with Apache Spark Delve deep into text and NLP using Python libraries such NLTK and gensim Select and build an ML model and evaluate and optimize its performance Implement ML algorithms from scratch in Python, TensorFlow, and scikit-learn Who this book is for If you’re a machine learning aspirant, data analyst, or data engineer highly passionate about machine learning and want to begin working on ML assignments, this book is for you. Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial although not necessary.
Popular Science gives our readers the information and tools to improve their technology and their world. The core belief that Popular Science and our readers share: The future is going to be better, and science and technology are the driving forces that will help make it better.
Gain practical insights into predictive modelling by implementing Predictive Analytics algorithms on public datasets with Python About This Book A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices Get to grips with the basics of Predictive Analytics with Python Learn how to use the popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering Who This Book Is For If you wish to learn how to implement Predictive Analytics algorithms using Python libraries, then this is the book for you. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about Predictive Analytics algorithms, this book will also help you. The book will be beneficial to and can be read by any Data Science enthusiasts. Some familiarity with Python will be useful to get the most out of this book, but it is certainly not a prerequisite. What You Will Learn Understand the statistical and mathematical concepts behind Predictive Analytics algorithms and implement Predictive Analytics algorithms using Python libraries Analyze the result parameters arising from the implementation of Predictive Analytics algorithms Write Python modules/functions from scratch to execute segments or the whole of these algorithms Recognize and mitigate various contingencies and issues related to the implementation of Predictive Analytics algorithms Get to know various methods of importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and numpy Create dummy datasets and simple mathematical simulations using the Python numpy and pandas libraries Understand the best practices while handling datasets in Python and creating predictive models out of them In Detail Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. Style and approach All the concepts in this book been explained and illustrated using a dataset, and in a step-by-step manner. The Python code snippet to implement a method or concept is followed by the output, such as charts, dataset heads, pictures, and so on. The statistical concepts are explained in detail wherever required.
Companies and organisations are increasingly using machine translation to improve efficiency and cost-effectiveness, and then edit the machine translated output to create a fluent text that adheres to given text conventions. This procedure is known as post-editing. Translation and post-editing can often be categorised as problem-solving activities. When the translation of a source text unit is not immediately obvious to the translator, or in other words, if there is a hurdle between the source item and the target item, the translation process can be considered problematic. Conversely, if there is no hurdle between the source and target texts, the translation process can be considered a task-solving activity and not a problem-solving activity. This study investigates whether machine translated output influences problem-solving effort in internet research, syntax, and other problem indicators and whether the effort can be linked to expertise. A total of 24 translators (twelve professionals and twelve semi-professionals) produced translations from scratch from English into German, and (monolingually) post-edited machine translation output for this study. The study is part of the CRITT TPR-DB database. The translation and (monolingual) post-editing sessions were recorded with an eye-tracker and a keylogging program. The participants were all given the same six texts (two texts per task). Different approaches were used to identify problematic translation units. First, internet research behaviour was considered as research is a distinct indicator of problematic translation units. Then, the focus was placed on syntactical structures in the MT output that do not adhere to the rules of the target language, as I assumed that they would cause problems in the (monolingual) post-editing tasks that would not occur in the translation from scratch task. Finally, problem indicators were identified via different parameters like Munit, which indicates how often the participants created and modified one translation unit, or the inefficiency (InEff) value of translation units, i.e. the number of produced and deleted tokens divided by the final length of the translation. Finally, the study highlights how these parameters can be used to identify problems in the translation process data using mere keylogging data.
"Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare!"--
"This book, a reference survey of social simulation work comprehensively collects the most exciting developments in the field. Drawing research contributions from a vibrant community of experts on social simulation, it provides a set of unique and innovative approaches, ranging from agent-based modeling to empirically based simulations, as well as applications in business, governmental, scientific, and other contexts"--Provided by publisher.

Best Books