Download Free Optimized C Book in PDF and EPUB Free Download. You can read online Optimized C and write the review.

In today’s fast and competitive world, a program’s performance is just as important to customers as the features it provides. This practical guide teaches developers performance-tuning principles that enable optimization in C++. You’ll learn how to make code that already embodies best practices of C++ design run faster and consume fewer resources on any computer—whether it’s a watch, phone, workstation, supercomputer, or globe-spanning network of servers. Author Kurt Guntheroth provides several running examples that demonstrate how to apply these principles incrementally to improve existing code so it meets customer requirements for responsiveness and throughput. The advice in this book will prove itself the first time you hear a colleague exclaim, “Wow, that was fast. Who fixed something?” Locate performance hot spots using the profiler and software timers Learn to perform repeatable experiments to measure performance of code changes Optimize use of dynamically allocated variables Improve performance of hot loops and functions Speed up string handling functions Recognize efficient algorithms and optimization patterns Learn the strengths—and weaknesses—of C++ container classes View searching and sorting through an optimizer’s eye Make efficient use of C++ streaming I/O functions Use C++ thread-based concurrency features effectively
Password sniffing, spoofing, buffer overflows, and denial of service: these are only a few of the attacks on today's computer systems and networks. At the root of this epidemic is poorly written, poorly tested, and insecure code that puts everyone at risk. Clearly, today's developers need help figuring out how to write code that attackers won't be able to exploit. But writing such code is surprisingly difficult. Secure Programming Cookbook for C and C++ is an important new resource for developers serious about writing secure code. It contains a wealth of solutions to problems faced by those who care about the security of their applications. It covers a wide range of topics, including safe initialization, access control, input validation, symmetric and public key cryptography, cryptographic hashes and MACs, authentication and key exchange, PKI, random numbers, and anti-tampering. The rich set of code samples provided in the book's more than 200 recipes will help programmers secure the C and C++ programs they write for both Unix® (including Linux®) and Windows® environments. Readers will learn: How to avoid common programming errors, such as buffer overflows, race conditions, and format string problems How to properly SSL-enable applications How to create secure channels for client-server communication without SSL How to integrate Public Key Infrastructure (PKI) into applications Best practices for using cryptography properly Techniques and strategies for properly validating input to programs How to launch programs securely How to use file access mechanisms properly Techniques for protecting applications from reverse engineering The book's web site supplements the book by providing a place to post new recipes, including those written in additional languages like Perl, Java, and Python. Monthly prizes will reward the best recipes submitted by readers. Secure Programming Cookbook for C and C++ is destined to become an essential part of any developer's library, a code companion developers will turn to again and again as they seek to protect their systems from attackers and reduce the risks they face in today's dangerous world.
Support Vector Machines (SVMs) are among the most important recent developments in pattern recognition and statistical machine learning. They have found a great range of applications in various fields including biology and medicine. However, biomedical researchers often experience difficulties grasping both the theory and applications of these important methods because of lack of technical background. The purpose of this book is to introduce SVMs and their extensions and allow biomedical researchers to understand and apply them in real-life research in a very easy manner. The book is to consist of two volumes: theory and methods (Volume 1) and case studies (Volume 2).
This book constitutes the proceedings of the 8th International Conference on Parallel Processing and Applied Mathematics, PPAM 2009, held in Wroclaw, Poland, in September 2009.
Advances in the Theory of Atomic and Molecular Systems, is a collection of contributions presenting recent theoretical and computational developments that provide new insights into the structure, properties, and behavior of a variety of atomic and molecular systems. This volume (subtitled “Dynamics, Spectroscopy, Clusters, and Nanostructures”) deals with the topics of “Quantum Dynamics and Spectroscopy”, “Complexes and Clusters”, and “Nanostructures and Complex Systems”. This volume is an invaluable resource for faculty, graduate students, and researchers interested in theoretical and computational chemistry and physics, physical chemistry and chemical physics, molecular spectroscopy, and related areas of science and engineering.
Write code that scales across CPU registers, multi-core, and machine clusters Key Features Explore concurrent programming in C++ Identify memory management problems Use SIMD and STL containers for performance improvement Book Description C++ is a highly portable language and can be used to write both large-scale applications and performance-critical code. It has evolved over the last few years to become a modern and expressive language. This book will guide you through optimizing the performance of your C++ apps by allowing them to run faster and consume fewer resources on the device they're running on without compromising the readability of your code base. The book begins by helping you measure and identify bottlenecks in a C++ code base. It then moves on by teaching you how to use modern C++ constructs and techniques. You'll see how this affects the way you write code. Next, you'll see the importance of data structure optimization and memory management, and how it can be used efficiently with respect to CPU caches. After that, you'll see how STL algorithm and composable Range V3 should be used to both achieve faster execution and more readable code, followed by how to use STL containers and how to write your own specialized iterators. Moving on, you’ll get hands-on experience in making use of modern C++ metaprogramming and reflection to reduce boilerplate code as well as in working with proxy objects to perform optimizations under the hood. After that, you’ll learn concurrent programming and understand lock-free data structures. The book ends with an overview of parallel algorithms using STL execution policies, Boost Compute, and OpenCL to utilize both the CPU and the GPU. What you will learn Benefits of modern C++ constructs and techniques Identify hardware bottlenecks, such as CPU cache misses, to boost performance Write specialized data structures for performance-critical code Use modern metaprogramming techniques to reduce runtime calculations Achieve efficient memory management using custom memory allocators Reduce boilerplate code using reflection techniques Reap the benefits of lock-free concurrent programming Perform under-the-hood optimizations with preserved readability using proxy objects Gain insights into subtle optimizations used by STL algorithms Utilize the Range V3 library for expressive C++ code Parallelize your code over CPU and GPU, without compromising readability Who this book is for If you're a C++ developer looking to improve the speed of your code or simply wanting to take your skills up to the next level, then this book is perfect for you.

Best Books