Download Free Pattern Mining With Evolutionary Algorithms Book in PDF and EPUB Free Download. You can read online Pattern Mining With Evolutionary Algorithms and write the review.

This book provides a comprehensive overview of the field of pattern mining with evolutionary algorithms. To do so, it covers formal definitions about patterns, patterns mining, type of patterns and the usefulness of patterns in the knowledge discovery process. As it is described within the book, the discovery process suffers from both high runtime and memory requirements, especially when high dimensional datasets are analyzed. To solve this issue, many pruning strategies have been developed. Nevertheless, with the growing interest in the storage of information, more and more datasets comprise such a dimensionality that the discovery of interesting patterns becomes a challenging process. In this regard, the use of evolutionary algorithms for mining pattern enables the computation capacity to be reduced, providing sufficiently good solutions. This book offers a survey on evolutionary computation with particular emphasis on genetic algorithms and genetic programming. Also included is an analysis of the set of quality measures most widely used in the field of pattern mining with evolutionary algorithms. This book serves as a review of the most important evolutionary algorithms for pattern mining. It considers the analysis of different algorithms for mining different type of patterns and relationships between patterns, such as frequent patterns, infrequent patterns, patterns defined in a continuous domain, or even positive and negative patterns. A completely new problem in the pattern mining field, mining of exceptional relationships between patterns, is discussed. In this problem the goal is to identify patterns which distribution is exceptionally different from the distribution in the complete set of data records. Finally, the book deals with the subgroup discovery task, a method to identify a subgroup of interesting patterns that is related to a dependent variable or target attribute. This subgroup of patterns satisfies two essential conditions: interpretability and interestingness.
This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics
Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.
The ?eld of bioinformatics has two main objectives: the creation and main- nance of biological databases, and the discovery of knowledge from life sciences data in order to unravel the mysteries of biological function, leading to new drugs and therapies for human disease. Life sciences data come in the form of biological sequences, structures, pathways, or literature. One major aspect of discovering biological knowledge is to search, predict, or model speci'c patterns present in a given dataset and then to interpret those patterns. Computer science methods such as evolutionary computation, machine learning, and data mining all have a great deal to o'er the ?eld of bioinformatics. The goal of the Fifth European Conference on Evolutionary Computation, Machine Learning, and Data Mining in Bioinformatics (EvoBIO 2007) was to bring experts in computer science - gether with experts in bioinformatics and the biological sciences to explore new and novel methods for solving complex biological problems. The ?fth EvoBIO conference was held in Valencia, Spain during April 11-13, 2007 at the Universidad Politecnica de Valencia. EvioBIO 2007 was held jointly with the Tenth European Conference on Genetic Programming (EuroGP 2007), the Seventh European Conference on Evolutionary Computation in Combina- rial Optimisation (EvoCOP 2007), and the Evo Workshops. Collectively, the c- ferences and workshops are organized under the name Evo* (www. evostar. org).
This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.
Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.
Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but also comprehensible and interesting to the user. The total process is highly computation intensive. The idea of automatically discovering knowledge from databases is a very attractive and challenging task, both for academia and for industry. Hence, there has been a growing interest in data mining in several AI-related areas, including evolutionary algorithms (EAs). The main motivation for applying EAs to KDD tasks is that they are robust and adaptive search methods, which perform a global search in the space of candidate solutions (for instance, rules or another form of knowledge representation).
The ?eld of bioinformatics has two main objectives: the creation and main- nance of biological databases, and the discovery of knowledge from life sciences datainordertounravelthemysteriesofbiologicalfunction,leadingtonewdrugs andtherapiesforhumandisease. Life sciencesdatacomeinthe formofbiological sequences, structures, pathways, or literature. One major aspect of discovering biological knowledge is to search, predict, or model speci?c information in a given dataset in order to generate new interesting knowledge. Computer science methods such as evolutionary computation, machine learning, and data mining all have a great deal to o?er the ?eld of bioinformatics. The goal of the 8th - ropean Conference on Evolutionary Computation, Machine Learning, and Data Mining in Bioinformatics (EvoBIO 2010) was to bring together experts in these ?elds in order to discuss new and novel methods for tackling complex biological problems. The 8th EvoBIO conference was held in Istanbul, Turkey during April 7–9, 2010attheIstanbulTechnicalUniversity. EvoBIO2010washeldjointlywiththe 13th European Conference on Genetic Programming (EuroGP 2010), the 10th European Conference on Evolutionary Computation in Combinatorial Opti- sation (EvoCOP 2010), and the conference on the applications of evolutionary computation,EvoApplications. Collectively,the conferences areorganizedunder the name Evo* (www. evostar. org). EvoBIO, held annually as a workshop since 2003, became a conference in 2007 and it is now the premiere European event for those interested in the interface between evolutionary computation, machine learning, data mining, bioinformatics, and computational biology.
Real life problems are known to be messy, dynamic and multi-objective, and involve high levels of uncertainty and constraints. Because traditional problem-solving methods are no longer capable of handling this level of complexity, heuristic search methods have attracted increasing attention in recent years for solving such problems. Inspired by nature, biology, statistical mechanics, physics and neuroscience, heuristics techniques are used to solve many problems where traditional methods have failed. Data Mining: A Heuristic Approach will be a repository for the applications of these techniques in the area of data mining.
This book presents a unified framework, based on specialized evolutionary algorithms, for the global induction of various types of classification and regression trees from data. The resulting univariate or oblique trees are significantly smaller than those produced by standard top-down methods, an aspect that is critical for the interpretation of mined patterns by domain analysts. The approach presented here is extremely flexible and can easily be adapted to specific data mining applications, e.g. cost-sensitive model trees for financial data or multi-test trees for gene expression data. The global induction can be efficiently applied to large-scale data without the need for extraordinary resources. With a simple GPU-based acceleration, datasets composed of millions of instances can be mined in minutes. In the event that the size of the datasets makes the fastest memory computing impossible, the Spark-based implementation on computer clusters, which offers impressive fault tolerance and scalability potential, can be applied.
Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration is a handbook for analysts, engineers, and managers involved in developing data mining models in business and government. As you’ll discover, fuzzy systems are extraordinarily valuable tools for representing and manipulating all kinds of data, and genetic algorithms and evolutionary programming techniques drawn from biology provide the most effective means for designing and tuning these systems. You don’t need a background in fuzzy modeling or genetic algorithms to benefit, for this book provides it, along with detailed instruction in methods that you can immediately put to work in your own projects. The author provides many diverse examples and also an extended example in which evolutionary strategies are used to create a complex scheduling system. Written to provide analysts, engineers, and managers with the background and specific instruction needed to develop and implement more effective data mining systems Helps you to understand the trade-offs implicit in various models and model architectures Provides extensive coverage of fuzzy SQL querying, fuzzy clustering, and fuzzy rule induction Lays out a roadmap for exploring data, selecting model system measures, organizing adaptive feedback loops, selecting a model configuration, implementing a working model, and validating the final model In an extended example, applies evolutionary programming techniques to solve a complicated scheduling problem Presents examples in C, C++, Java, and easy-to-understand pseudo-code Extensive online component, including sample code and a complete data mining workbench
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
This book constitutes the refereed proceedings of the 11th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2013, held in Vienna, Austria, in April 2013, colocated with the Evo* 2013 events EuroGP, EvoCOP, EvoMUSART and EvoApplications. The 10 revised full papers presented together with 9 poster papers were carefully reviewed and selected from numerous submissions. The papers cover a wide range of topics in the field of biological data analysis and computational biology. They address important problems in biology, from the molecular and genomic dimension to the individual and population level, often drawing inspiration from biological systems in oder to produce solutions to biological problems.
This book constitutes the refereed proceedings of the 10th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2012, held in Málaga, Spain, in April 2012 co-located with the Evo* 2012 events. The 15 revised full papers presented together with 8 poster papers were carefully reviewed and selected from numerous submissions. Computational Biology is a wide and varied discipline, incorporating aspects of statistical analysis, data structure and algorithm design, machine learning, and mathematical modeling toward the processing and improved understanding of biological data. Experimentalists now routinely generate new information on such a massive scale that the techniques of computer science are needed to establish any meaningful result. As a consequence, biologists now face the challenges of algorithmic complexity and tractability, and combinatorial explosion when conducting even basic analyses.
There are more than one billion documents on the Web, with the count continually rising at a pace of over one million new documents per day. As information increases, the motivation and interest in data warehousing and mining research and practice remains high in organizational interest. The Encyclopedia of Data Warehousing and Mining, Second Edition, offers thorough exposure to the issues of importance in the rapidly changing field of data warehousing and mining. This essential reference source informs decision makers, problem solvers, and data mining specialists in business, academia, government, and other settings with over 300 entries on theories, methodologies, functionalities, and applications.
This book constitutes the refereed proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2007, held in Nanjing, China in May 2007.The 34 revised full papers and 92 revised short papers presented together with 4 keynote talks or extended abstracts thereof were carefully reviewed and selected from 730 submissions. The papers are devoted to new ideas, original research results and practical development experiences from all KDD-related areas including data mining, machine learning, databases, statistics, data warehousing, data visualization, automatic scientific discovery, knowledge acquisition and knowledge-based systems.
The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAEES 2014) held at Noorul Islam Centre for Higher Education, Kumaracoil, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.
This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics. It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field. A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described. Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features). This book targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook.
Knowledge Mining Using Intelligent Agents explores the concept of knowledge discovery processes and enhances decision-making capability through the use of intelligent agents like ants, termites and honey bees. In order to provide readers with an integrated set of concepts and techniques for understanding knowledge discovery and its practical utility, this book blends two distinct disciplines data mining and knowledge discovery process, and intelligent agents-based computing (swarm intelligence and computational intelligence). For the more advanced reader, researchers, and decision/policy-makers are given an insight into emerging technologies and their possible hybridization, which can be used for activities like dredging, capturing, distributions and the utilization of knowledge in their domain of interest (i.e. business, policy-making, etc.). By studying the behavior of swarm intelligence, this book aims to integrate the computational intelligence paradigm and intelligent distributed agents architecture to optimize various engineering problems and efficiently represent knowledge from the large gamut of data.
Integrates computer vision, pattern recognition, and AI. Presents original research that will benefit researchers and professionals in computer vision, pattern recognition, target recognition, machine learning, evolutionary learning, image processing, knowledge discovery and data mining, cybernetics, robotics, automation and psychology

Best Books