Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which Principia Mathematica provided the detailed proof, and introduced the work of Frege to a wider audience. In addition to the new introduction by John Slater, this edition contains Russell's introduction to the 1937 edition in which he defends his position against his formalist and intuitionist critics.
David Hilbert was particularly interested in the foundations of mathematics. Among many other things, he is famous for his attempt to axiomatize mathematics. This now classic text is his treatment of symbolic logic. This translation is based on the second German edition and has been modified according to the criticisms of Church and Quine. In particular, the authors' original formulation of Godel's completeness proof for the predicate calculus has been updated. In the first half of the twentieth century, an important debate on the foundations of mathematics took place. Principles of Mathematical Logic represents one of Hilbert's important contributions to that debate. Although symbolic logic has grown considerably in the subsequent decades, this book remains a classic.
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Teacher Guide for Book 1 of the Principles of Mathematics - Biblical Worldview Curriculum for junior high! Math is a real-life tool that points us to God and helps us explore His creation, yet it often comes across as dry facts and meaningless rules. Here at last is a curriculum that has a biblical worldview integrated throughout the text and problems, not just added as an afterthought. The resources in the Teacher Guide will help students master and apply the skills learned in the Student Textbook. What does this Teacher Guide include? Worksheets, Quizzes, and Tests: These perforated, three-hole punched pages help provide practice on the principles taught in the main student textbook.Answer Keys: The answers are included for the worksheets, quizzes, and tests found in this Teacher Guide.Schedule: A suggested calendar schedule is provided for completing the material in one year, though this can be adapted to meet individual student needs. There is also an accelerated schedule for completing the material in one semester. Are there any prerequisites for this course? This curriculum is aimed at grades 6-8, fitting into most math approaches the year or two years prior to starting high school algebra. If following traditional grade levels, Book 1 should be completed in grade 6 or 7, and Book 2 in grade 7 or 8. In Book 1 students should have a basic knowledge of arithmetic (basic arithmetic will be reviewed, but at a fast pace and while teaching problem-solving skills and a biblical worldview of math) and sufficient mental development to think through the concepts and examples given. Typically, anyone in sixth grade or higher should be prepared to begin. The focus of the course is actually learning math for life, not simply preparing to pass a test.
Presents a uniquely balanced approach that bridges introductory and advanced topics in modern mathematics An accessible treatment of the fundamentals of modern mathematics, Principles of Mathematics: A Primer provides a unique approach to introductory andadvanced mathematical topics. The book features six main subjects, whichcan be studied independently or in conjunction with each other including: settheory; mathematical logic; proof theory; group theory; theory of functions; andlinear algebra. The author begins with comprehensive coverage of the necessary building blocks in mathematics and emphasizes the need to think abstractly and develop an appreciation for mathematical thinking. Maintaining a useful balance of introductory coverage and mathematical rigor, Principles of Mathematics: A Primer features: Detailed explanations of important theorems and their applications Hundreds of completely solved problems throughout each chapter Numerous exercises at the end of each chapter to encourage further exploration Discussions of interesting and provocative issues that spark readersâ€™ curiosity and facilitate a better understanding and appreciation of the field of mathematics Principles of Mathematics: A Primer is an ideal textbook for upper-undergraduate courses in the foundations of mathematics and mathematical logic as well as for graduate-level courses related to physics, engineering, and computer science. The book is also a useful reference for readers interested in pursuing careers in mathematics and the sciences.
This book, written by one of philosophy's pre-eminent logicians, argues that many of the basic assumptions common to logic, philosophy of mathematics and metaphysics are in need of change. It is therefore a book of critical importance to logical theory. Jaakko Hintikka proposes a new basic first-order logic and uses it to explore the foundations of mathematics. This new logic enables logicians to express on the first-order level such concepts as equicardinality, infinity, and truth in the same language. The famous impossibility results by GĂ¶del and Tarski that have dominated the field for the last sixty years turn out to be much less significant than has been thought. All of ordinary mathematics can in principle be done on this first-order level, thus dispensing with the existence of sets and other higher-order entities.