Download Free Probabilistic Reasoning In Intelligent Systems Book in PDF and EPUB Free Download. You can read online Probabilistic Reasoning In Intelligent Systems and write the review.

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
Textbook offers an accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. For graduate-level courses in AI, operations research, and applied probability. Annotation copyright Book News, Inc. Portland, Or.
Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
This 2002 book investigates the opportunities in building intelligent decision support systems offered by multi-agent distributed probabilistic reasoning. Probabilistic reasoning with graphical models, also known as Bayesian networks or belief networks, has become increasingly an active field of research and practice in artificial intelligence, operations research and statistics. The success of this technique in modeling intelligent decision support systems under the centralized and single-agent paradigm has been striking. Yang Xiang extends graphical dependence models to the distributed and multi-agent paradigm. He identifies the major technical challenges involved in such an endeavor and presents the results. The framework developed in the book allows distributed representation of uncertain knowledge on a large and complex environment embedded in multiple cooperative agents, and effective, exact and distributed probabilistic inference.
Probabilistic Reasoning and Decision Making in Sensory-Motor Systems by Pierre Bessiere, Christian Laugier and Roland Siegwart provides a unique collection of a sizable segment of the cognitive systems research community in Europe. It reports on contributions from leading academic institutions brought together within the European projects Bayesian Inspired Brain and Artifact (BIBA) and Bayesian Approach to Cognitive Systems (BACS). This fourteen-chapter volume covers important research along two main lines: new probabilistic models and algorithms for perception and action, new probabilistic methodology and techniques for artefact conception and development. The work addresses key issues concerned with Bayesian programming, navigation, filtering, modelling and mapping, with applications in a number of different contexts.
Probabilistic information has many uses in an intelligent system. This book explores logical formalisms for representing and reasoning with probabilistic information that will be of particular value to researchers in nonmonotonic reasoning, applications of probabilities, and knowledge representation. It demonstrates that probabilities are not limited to particular applications, like expert systems; they have an important role to play in the formal design and specification of intelligent systems in general. Fahiem Bacchus focuses on two distinct notions of probabilities: one propositional, involving degrees of belief, the other proportional, involving statistics. He constructs distinct logics with different semantics for each type of probability that are a significant advance in the formal tools available for representing and reasoning with probabilities. These logics can represent an extensive variety of qualitative assertions, eliminating requirements for exact point-valued probabilities, and they can represent first­order logical information. The logics also have proof theories which give a formal specification for a class of reasoning that subsumes and integrates most of the probabilistic reasoning schemes so far developed in AI. Using the new logical tools to connect statistical with propositional probability, Bacchus also proposes a system of direct inference in which degrees of belief can be inferred from statistical knowledge and demonstrates how this mechanism can be applied to yield a powerful and intuitively satisfying system of defeasible or default reasoning. Contents: Introduction. Propositional Probabilities. Statistical Probabilities. Combining Statistical and Propositional Probabilities Default Inferences from Statistical Knowledge.
This book constitutes the refereed proceedings of the 9th International Symposium on Methodologies for Intelligent Systems, ISMIS '96, held in Zakopane, Poland, in June 1996. The 53 revised full papers presented were selected from a total of 124 submissions; also included are 10 invited papers by leading experts surveying the state of the art in the area. The volume covers the following areas: approximate reasoning, evolutionary computation, intelligent information systems, knowledge representation and integration, learning and knowledge discovery, and AI logics.

Best Books