Download Free Rf Power Amplifiers Book in PDF and EPUB Free Download. You can read online Rf Power Amplifiers and write the review.

This text presents a full account of RF amplifiers and provides a thorough understanding of power amplifier principles and their applications. This comprehensive book covers all important design techniques for power amplifiers and includes mathematical derivations and the assumptions used to develop design rules.
This book tackles both high efficiency and high linearity power amplifier (PA) design in low-voltage CMOS. With its emphasis on theory, design and implementation, the book offers a guide for those actively involved in the design of fully integrated CMOS wireless transceivers. Offering mathematical background, as well as intuitive insight, the book is essential reading for RF design engineers and researchers and is also suitable as a text book.
This second edition of the highly acclaimed RF Power Amplifiers has been thoroughly revised and expanded to reflect the latest challenges associated with power transmitters used in communications systems. With more rigorous treatment of many concepts, the new edition includes a unique combination of class-tested analysis and industry-proven design techniques. Radio frequency (RF) power amplifiers are the fundamental building blocks used in a vast variety of wireless communication circuits, radio and TV broadcasting transmitters, radars, wireless energy transfer, and industrial processes. Through a combination of theory and practice, RF Power Amplifiers, Second Edition provides a solid understanding of the key concepts, the principle of operation, synthesis, analysis, and design of RF power amplifiers. This extensive update boasts: up to date end of chapter summaries; review questions and problems; an expansion on key concepts; new examples related to real-world applications illustrating key concepts and brand new chapters covering 'hot topics' such as RF LC oscillators and dynamic power supplies. Carefully edited for superior readability, this work remains an essential reference for research & development staff and design engineers. Senior level undergraduate and graduate electrical engineering students will also find it an invaluable resource with its practical examples & summaries, review questions and end of chapter problems. Key features: A fully revised solutions manual is now hosted on a companion website alongside new simulations. Extended treatment of a broad range of topologies of RF power amplifiers. In-depth treatment of state-of-the art of modern transmitters and a new chapter on oscillators. Includes problem-solving methodology, step-by-step derivations and closed-form design equations with illustrations.
Advanced Design Techniques for RF Power Amplifiers provides a deep analysis of theoretical aspects, modelling, and design strategies of RF high-efficiency power amplifiers. The book can be used as a guide by scientists and engineers dealing with the subject and as a text book for graduate and postgraduate students. Although primarily intended for skilled readers, it provides an excellent quick start for beginners.
A majority of people now have a digital mobile device whether it be a cell phone, laptop, or blackberry. Now that we have the mobility we want it to be more versatile and dependable; RF power amplifiers accomplish just that. These amplifiers take a small input and make it stronger and larger creating a wider area of use with a more robust signal. Switching mode RF amplifiers have been theoretically possible for decades, but were largely impractical because they distort analog signals until they are unrecognizable. However, distortion is not an issue with digital signals—like those used by WLANs and digital cell phones—and switching mode RF amplifiers have become a hot area of RF/wireless design. This book explores both the theory behind switching mode RF amplifiers and design techniques for them. *Provides essential design and implementation techniques for use in cma2000, WiMAX, and other digital mobile standards *Both authors have written several articles on the topic and are well known in the industry *Includes specific design equations to greatly simplify the design of switchmode amplifiers
The radio frequency (RF) power amplifier (PA) is the last block in a transmitter chain. It amplifies the signal to the target power and drives the antenna. The power amplifier consumes the largest portion of the transmitter current consumption budget, and any power saving in this block will significantly improve the overall system efficiency. This is especially critical in battery-operated portable wireless communication systems such as cellular phones, PDA's and laptops. There is a trade-off between efficiency and linearity in power amplifiers. Non-switching power amplifiers efficiency increases as the output power increases, but so does the amplifier distortion. This is more problematic in modern wireless communication systems, where spectrally efficient and high data rate modulations are used and the linearity requirement is hard to meet. The two common approaches of backing-off the output power and adding a linearization scheme have their own challenges. The first one results in efficiency loss and the second one adds to the system complexity and has design challenges for wideband applications. The design of highly efficient and linear RF power amplifiers has been the subject of several studies. Different techniques have been proposed to overcome the challenge. Dynamic control of the power amplifier quiescent current, dynamic control of the load impedance, output harmonic control and dynamic supply voltage control (envelope tracking) are the popular proposed techniques. Despite the fact that the envelope tracking technique has gained momentum as an attractive efficiency enhancement method for handset applications, its implementation still faces challenges. This technique needs a high efficiency envelope amplifier to achieve good overall efficiency. The design of a small, efficient and wideband envelope amplifier is very challenging. Usually these amplifiers require external components and if they are in the switching mode they can add disturbance to the rest of the system. This research focuses on a technique that overcomes this main challenge of the ET amplifier design and is organized as follows : Chapter 1 is the introduction and discusses the motivation of this research and some of the prior art. Chapter 2 explains the proposed technique to enhance the RF power amplifiers efficiency in high peak-to-average power ratio applications. This technique is based on controlling the baseband drain impedance by adding an envelope termination to the PA supply, and applying the baseband envelope signal to the input. As a result, the amplifier operates closer to its saturated region for all envelope amplitudes, and its efficiency is improved. A digital predistortion scheme is implemented to compensate for the linearity degradation of the proposed technique. A 1.95GHz HFET power amplifier exhibits an improvement in peak PAE from 40% to 56% for a two-tone input, from 33% to 42% for an uplink WCDMA with one dedicated physical data channel and from 27% to 32% for an uplink WCDMA with six dedicated physical data channels using the proposed technique. Chapter 3 shows some improvements to the proposed technique including adding envelope equalization. The envelope equalization also improves the amplifier linearity since it reduces the distortion from clipping the output signal due to non-ideal dynamic supply. The linearity of the implemented amplifier is studied in a large-signal fashion. This technique improves the maximum efficiency from 28% to 40% for an uplink WCDMA signal with six dedicated physical data channels and the maximum linear efficiency from 21% to 28%. Also, a scheme to vary the DC power supply with the average power to maintain high efficiency down to a low average power region is proposed. Chapter 4 studies envelope feedback systems stability. The stability criteria are derived based on the Lyapunov stability theorem for time-varying systems and the tool of linear matrix inequality (LMI). The effects of system parameters on the stability are investigated. The system is simulated in Simulink and implemented, and stability boundaries predicted by LMI are in good agreement with the simulation and measurement results. Chapter 5 concludes the dissertation and suggests some future work.
An advanced textbook covering the fundamental theory of RF power amplifiers and their uses, this book provides essential guidance for design procedures. The introduction explains the basic theory of RF power amplifiers besides providing the basic classification of the different types of RF power amplifier. It then systematically dedicates a chapter to each different of RF power amplifier covering A, B and C, D (full-bridge and half-bridge types), E (zero-voltage-switching and zero-current-switching), F and DE amplifiers. Throughout this comprehensive guide, the optimal operating conditions are explored and the possible causes for suboptimum operation explained. The book then considers integrated inductors and linearization techniques and LC Oscillators in the concluding chapters. A comprehensive text covering the fundamentals of RF power amplifiers and their range of applications in radio and TV broadcasting, wireless communications and radars. Presents accessible coverage of the complex principles of operation of RF power amplifiers and radio power systems. Introduces the fundamental design techniques and procedures for practitioners for RF power amplifiers. All chapters contain examples and design procedures throughout, with review questions and problems at the end of each chapter. A solutions manual is available for instructors upon enquiry
Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book: Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiers Describes the high-frequency model and transient characteristics of metal–oxide–semiconductor field-effect transistors Details active device modeling techniques for transistors and parasitic extraction methods for active devices Explores network and scattering parameters, resonators, matching networks, and tools such as the Smith chart Covers power-sensing devices including four-port directional couplers and new types of reflectometers Presents RF filter designs for power amplifiers as well as application examples of special filter types Demonstrates the use of computer-aided design (CAD) tools, implementing systematic design techniques Blending theory with practice, Introduction to RF Power Amplifier Design and Simulation supplies engineers, researchers, and RF/microwave engineering students with a valuable resource for the creation of efficient, better-performing, low-profile, high-power RF amplifiers.
This much-anticipated volume builds on the author's best selling and classic work, RF Power Amplifiers for Wireless Communications (Artech House, 1999), offering experienced engineers a more in-depth understanding of the theory and design of RF power amplifiers. An invaluable reference tool for RF, digital and system level designers, the book includes discussions on the most critical topics for professionals in the field, including envelope power management schemes and linearization.
Improving the performance of the power amplifier is the most pressing problem facing designers of modern radio-frequency (RF) transceivers. Linearity and power efficiency of the transmit path are of utmost importance, and the power amplifier has proven to be the bottleneck for both. High linearity enables transmission at the highest data rates for a given channel bandwidth, and power efficiency prolongs battery lifetime in portable units and reduces heat dissipation in high-power transmitters. Cartesian feedback is a power amplifier linearization technique that acts to soften the tradeoff between power efficiency and linearity in power amplifiers. Despite its compelling, fundamental advantages, the technique has not enjoyed widespread acceptance because of certain implementation difficulties. Feedback Linearization of RF Power Amplifiers introduces new techniques for overcoming the challenges faced by the designer of a Cartesian feedback system. The theory of the new techniques are described and analyzed in detail. The book culminates with the results of the first known fully integrated Cartesian feedback power amplifier system, whose design was enabled by the techniques described. Feedback Linearization of RF Power Amplifiers is a valuable reference work for engineers in the telecommunications industry, industry researchers, academic researchers.
This is a one-stop guide for circuit designers and system/device engineers, covering everything from CAD to reliability.
Here is a thorough treatment of distortion in RF power amplifiers. This unique resource offers expert guidance in designing easily linearizable systems that have low memory effects. It offers you a detailed understanding of how the matching impedances of a power amplifier and other RF circuits can be tuned to minimize overall distortion. What's more, you see how to build models that can be used for distortion simulations.
Design and Control of RF Power Amplifiers investigates various architectures and concepts for the design and control of radio-frequency (RF) power amplifiers. This book covers merits and challenges of integrating RF power amplifiers in various technologies, and introduces a number of RF power amplifier performance metrics. It provides a thorough review of various power amplifier topologies, followed by a description of approaches and architectures for the control and linearization of these amplifiers. A novel parallel amplifier architecture introduced in this book offers a breakthrough solution to enhancing efficiency in systems using power control. Design and Control of RF Power Amplifiers is a valuable resource for designers, researchers and students in the field of RF integrated circuit design. Detailed and thorough coverage of various concepts in RF power amplifier design makes this book an invaluable guide for both beginners and professionals.
Combining solid theoretical discussions with practical design examples, this book is an essential reference on developing RF and microwave switchmode power amplifiers. With this book you will be able to: Design high-efficiency RF and microwave power amplifiers on different types of bipolar and field-effect transistors using well-known and novel theoretical approaches, nonlinear simulation tools, and practical design techniques Design any type of high-efficiency switchmode power amplifiers operating in Class D or E at lower frequencies and in Class E or F and their subclasses at microwave frequencies, with specified output power Understand the theory and practical implementation of load-network design techniques based on lumped and transmission-line elements Combine multi-stage Doherty architecture and switchmode power amplifiers to significantly increase efficiency of the entire radio transmitter Learn the different types of predistortion linearization techniques required to improve the quality of signal transmission in a nonlinear amplifying system New to this edition: Comprehensive overview of different Doherty architectures which are, and will be used in modern communication systems to save power consumption and reduce costs A new chapter on analog and digital predistortion techniques Coverage of broadband Class-F power amplifiers, high-power inverse Class-F power amplifiers for WCDMA systems, broadband Class-E techniques Unique focus on switchmode RF and microwave power amplifiers that are widely used in cellular/wireless, satellite and radar communication systems and which offer major power consumption savings Complete coverage of the new Doherty architecture which offers major efficiencies and savings on power consumption Balances theory with practical implementatation, avoiding a cookbook approach, enabling engineers to develop better designs Trusted content from leading figures in the field with a Foreword of endorsement by Zoya Popovic
This extensively revised edition offers a comprehensive, practical, up-to-date understanding of how to tackle a power amplifier design with confidence and quickly determine the cause of malfunctioning hardware.
Wireless voice and data communications have made great improvements, with connectivity now virtually ubiquitous. Users are demanding essentially perfect transmission and reception of voice and data. The infrastructure that supports this wide connectivity and nearly error-free delivery of information is complex, costly, and continually being improved. This resource describes the mathematical methods and practical implementations of linearization techniques for RF power amplifiers for mobile communications. This includes a review of RF power amplifier design for high efficiency operation. Readers are also provided with mathematical approaches to modeling nonlinear dynamical systems, which can be applied in the context of modeling the PA for identification in a pre-distortion system. This book also describes typical approaches to linearization and digital pre-distortion that are used in practice.
This is a rigorous tutorial on radio frequency and microwave power amplifier design, teaching the circuit design techniques that form the microelectronic backbones of modern wireless communications systems. Suitable for self-study, corporate training, or Senior/Graduate classroom use, the book combines analytical calculations and computer-aided design techniques to arm electronic engineers with every possible method to improve their designs and shorten their design time cycles.
Achieve higher levels of performance, integration, compactness, and cost-effectiveness in the design and modeling of radio-frequency (RF) power amplifiers RF power amplifiers are important components of any wireless transmitter, but are often the limiting factors in achieving better performance and lower cost in a wireless communication system—presenting the RF IC design community with many challenges. The next-generation technological advances presented in this book are the result of cutting-edge research in the area of large-signal device modeling and RF power amplifier design at the Georgia Institute of Technology, and have the potential to significantly address issues of performance and cost-effectiveness in this area. Richly complemented with hundreds of figures and equations, Modeling and Design Techniques for RF Power Amplifiers introduces and explores the most important topics related to RF power amplifier design under one concise cover. With a focus on efficiency enhancement techniques and the latest advances in the field, coverage includes: Device modeling for CAD Empirical modeling of bipolar devices Scalable modeling of RF MOSFETs Power amplifier IC design Power amplifier design in silicon Efficiency enhancement of RF power amplifiers The description of state-of-the-art techniques makes this book a valuable and handy reference for practicing engineers and researchers, while the breadth of coverage makes it an ideal text for graduate- and advanced undergraduate-level courses in the area of RF power amplifier design and modeling.
Do you want to know how to design high efficiency RF and microwave solid state power amplifiers? Read this book to learn the main concepts that are fundamental for optimum amplifier design. Practical design techniques are set out, stating the pros and cons for each method presented in this text. In addition to novel theoretical discussion and workable guidelines, you will find helpful running examples and case studies that demonstrate the key issues involved in power amplifier (PA) design flow. Highlights include: Clarification of topics which are often misunderstood and misused, such as bias classes and PA nomenclatures. The consideration of both hybrid and monolithic microwave integrated circuits (MMICs). Discussions of switch-mode and current-mode PA design approaches and an explanation of the differences. Coverage of the linearity issue in PA design at circuit level, with advice on low distortion power stages. Analysis of the hot topic of Doherty amplifier design, plus a description of advanced techniques based on multi-way and multi-stage architecture solutions. High Efficiency RF and Microwave Solid State Power Amplifiers is: an ideal tutorial for MSc and postgraduate students taking courses in microwave electronics and solid state circuit/device design; a useful reference text for practising electronic engineers and researchers in the field of PA design and microwave and RF engineering. With its unique unified vision of solid state amplifiers, you won’t find a more comprehensive publication on the topic.
This is the first book devoted exclusively to the outphasing power amplifier, covering the most recent research results on important aspects in practical design and applications. A compilation of all the proposed outphasing approaches, this is an important resource for engineers designing base station and mobile handset amplifiers, engineering managers and program managers supervising power amplifier designs, and R&D personnel in industry. The work enables you to: design microwave power amplifiers with higher efficiency and improved linearity at a lower cost; understand linearity and performance tradeoffs in microwave power amplifiers; and understand the effect of new modulation techniques on microwave power amplifiers.

Best Books